MAT 129 Practice Midterm Exam

The actual midterm exam will be conducted in class on Friday May 7, 2010

Name:______Student ID #:

- Read each problem carefully.
- Write every step of your reasoning clearly.
- Usually, a better strategy is to solve the easiest problem first.
- This is a closed-book exam. You may not use the textbook, crib sheets, notes, or any other outside material. Do not bring your own scratch paper. Do not bring blue books.
- No calculators/laptop computers/cell phones are allowed for the exam. The exam is to test your basic understanding of the material.
- Everyone works on their own exams. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Problem #	Score
1 (30 pts)	
2 (20 pts)	
3 (25 pts)	
4 (25 pts)	
Total	

Problem 1 (30 pts)

(a) (10 pts) Compute the Fourier series of $f(\theta) = \theta$ on $[-\pi, \pi]$, which is 2π periodic.

(b) (10 pts) Compute the Fourier *cosine* series of $f(\theta) = \theta$ on $[0, \pi]$. Compare the decay rate of the coefficients with that of Part (a). Which coefficients decay faster?

(c) (10 pts) Prove

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

using the result of Part (b).

Problem 2 (20 pts) Let $\{\phi_n(x)\}_{n=1}^{\infty}$ be an orthonormal *set* in $L^2[a, b]$. (a) (10 pts) For any function $f \in L^2[a, b]$, state *Bessel's inequality* for this function.

(b) (10 pts) Under what condition Bessel's inequality becomes *Parseval's equality*?

Problem 3 (25 pts)

The *n*th Legendre polynomial is defined as

$$P_n(x) \stackrel{\Delta}{=} \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d} x^n} (x^2 - 1)^n, \quad n = 0, 1, \dots$$

The set $\{P_n\}_{n=0}^{\infty}$ form an *orthogonal* basis for $L^2[-1,1]$. Thus any $f \in L^2[-1,1]$ can be written as:

$$f(x) = \sum_{n=0}^{\infty} a_n P_n(x).$$

From the above definition, we also know that $P_n(x)$ is a polynomial of degree *n*. Thus, a monomial x^M can be always written as $x^M = \sum_{n=0}^M a_n P_n(x)$, which is called the *Legendre expansion* of x^M .

(a) (10 pts) Obtain the Legendre expansion of x^2 .

(b) (15 pts) Let P₁ be a set of all possible polynomial of degree 1, i.e., a set of all possible straight lines in R². What is the best linear L²-approximation to x² in P₁ over the interval [-1,1]? In other words, what is the least squares line to approximate x² over [-1,1]?

Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

 $u'' + \lambda u = 0$, u'(0) = u'(1) = 0, on [0, 1].