MAT 129 Practice Midterm Exam

The actual midterm exam will be conducted in class on Friday May 7, 2010

Name: \qquad
Student ID \#:

- Read each problem carefully.
- Write every step of your reasoning clearly.
- Usually, a better strategy is to solve the easiest problem first.
- This is a closed-book exam. You may not use the textbook, crib sheets, notes, or any other outside material. Do not bring your own scratch paper. Do not bring blue books.
- No calculators/laptop computers/cell phones are allowed for the exam. The exam is to test your basic understanding of the material.
- Everyone works on their own exams. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Problem \#	Score
$1(30 \mathrm{pts})$	
$2(20 \mathrm{pts})$	
$3(25 \mathrm{pts})$	
$4(25 \mathrm{pts})$	
Total	

Problem 1 (30 pts)
(a) (10 pts) Compute the Fourier series of $f(\theta)=\theta$ on $[-\pi, \pi]$, which is 2π periodic.
(b) (10 pts) Compute the Fourier cosine series of $f(\theta)=\theta$ on $[0, \pi]$. Compare the decay rate of the coefficients with that of Part (a). Which coefficients decay faster?
(c) (10 pts) Prove

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

using the result of Part (b).

Problem $2\left(20\right.$ pts) Let $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ be an orthonormal set in $L^{2}[a, b]$.
(a) (10 pts) For any function $f \in L^{2}[a, b]$, state Bessel's inequality for this function.
(b) (10 pts) Under what condition Bessel's inequality becomes Parseval's equality?

Problem 3 (25 pts)

The nth Legendre polynomial is defined as

$$
P_{n}(x) \triangleq \frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2}-1\right)^{n}, \quad n=0,1, \ldots
$$

The set $\left\{P_{n}\right\}_{n=0}^{\infty}$ form an orthogonal basis for $L^{2}[-1,1]$. Thus any $f \in L^{2}[-1,1]$ can be written as:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x) .
$$

From the above definition, we also know that $P_{n}(x)$ is a polynomial of degree n. Thus, a monomial x^{M} can be always written as $x^{M}=\sum_{n=0}^{M} a_{n} P_{n}(x)$, which is called the Legendre expansion of x^{M}.
(a) (10 pts) Obtain the Legendre expansion of x^{2}.
(b) (15 pts) Let \mathcal{P}_{1} be a set of all possible polynomial of degree 1, i.e., a set of all possible straight lines in \mathbb{R}^{2}. What is the best linear L^{2}-approximation to x^{2} in \mathcal{P}_{1} over the interval $[-1,1]$? In other words, what is the least squares line to approximate x^{2} over $[-1,1]$?

Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

$$
u^{\prime \prime}+\lambda u=0, \quad u^{\prime}(0)=u^{\prime}(1)=0, \quad \text { on }[0,1] .
$$

