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Problem 1 (30 pts)

(a) (10 pts) Compute the Fourier series of f (θ) = θ on [−π,π], which is 2π periodic.

Answer: Since this is an odd function, we only need the coefficients with the sine terms, not the
cosine terms. Hence, we need to compute, for n ∈N,

bn = 1

π

∫ π

−π
θ sinnθdθ

= 2

π

∫ π

0
θ sinnθdθ

= 2

π

{[
θ · −cosnθ

n

]π
0
+ 1

n

∫ π

0
cosnθdθ

}
via Integration by Parts

= 2

π

{
π

(−1)n+1

n
+ 1

n

[
sinnθ

n

]π
0

}
= 2(−1)n+1

n
.

Hence, we have

f (θ) = θ ∼
∞∑

n=1
bn sinnθ = 2

∞∑
n=1

(−1)n+1

n
sinnθ.

(b) (10 pts) Compute the Fourier cosine series of f (θ) = θ on [0,π]. Compare the decay rate of the
coefficients with that of Part (a). Which coefficients decay faster?

Answer: Using the formula for the Fourier cosine coefficients over [0,π], we have, for n = 1, . . . ,

an = 2

π

∫ π

0
θcosnθdθ

= 2

π

{[
θ · sinnθ

n

]π
0
− 1

n

∫ π

0
sinnθdθ

}
via Integration by Parts

= 2

π

{
0− 1

n

[−cosnθ

n

]π
0

}
= 2

π

(−1)n −1

n2
.

Now, for n = 0, we have:

a0 = 2

π

∫ π

0
θdθ = 2

π

(
π2

2
−0

)
=π.

Hence, we have

f (θ) = θ ∼ a0

2
+

∞∑
n=1

an cosnθ = π

2
+ 2

π

∞∑
n=1

(−1)n −1

n2
cosnθ = π

2
− 4

π

∞∑
n=1

cos(2n −1)θ

(2n −1)2
.
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As for the decay rates, the solution of Part a gives us bn = O

(
1

n

)
whereas that of Part b

is an = O

(
1

n2

)
, which clearly decays faster than the former. This of course comes from

the functions to be expanded into these Fourier series. In Part a, f (θ) = θ on [−π,π] and
extended periodically over the entire R. This periodic function is discontinuous at θ = nπ,
∀n ∈ Z. On the other hand, in Part b, f (θ) = θ on [0,π] is extended as an even function
because of the Fourier cosine series expansion. Therefore, it is the same as the ordinary
Fourier series expansion of f (θ) = |θ| on [−π,π], which is continuous over R even after
periodic extension.

(c) (10 pts) Prove
∞∑

n=1

1

n2
= π2

6
,

using the result of Part (b).

Answer: We evaluate the Fourier cosine series of Part b at θ = 0. Because the function f (θ) = θ

on [−π,π] from the viewpoint of the Fourier cosine series expansion is the same as f (θ) = |θ|
on [−π,π] from the viewpoint of the ordinary Fourier series expansion as discussed in Part
b, we can use the pointwise convergent theorem of the Fourier series, since f (θ) = |θ| after
periodization with period 2π is clearly piecewise smooth. Hence,

f (0) = 0 = π

2
− 4

π

∞∑
n=1

cos((2n −1)0)

(2n −1)2
= π

2
− 4

π

∞∑
n=1

1

(2n −1)2
.

This leads to ∞∑
n=1

1

(2n −1)2
= π2

8
.

Now,

∞∑
n=1

1

n2
=

∞∑
n=1

(
1

(2n −1)2
+ 1

(2n)2

)
Splitting even and odd terms

=
∞∑

n=1

1

(2n −1)2
+

∞∑
n=1

1

(2n)2
since both series are convergent

= π2

8
+ 1

4

∞∑
n=1

1

n2

Let S
∆=

∞∑
n=1

1

n2
, then the above equation says:

S = π2

8
+ S

4
⇐⇒ S = π2

6
.
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Problem 2 (20 pts) Let {φn(x)}∞n=1 be an orthonormal set in L2[a,b].

(a) (10 pts) For any function f ∈ L2[a,b], state Bessel’s inequality for this function.

Answer: Bessel’s inequality states:
∞∑

n=1
|〈 f ,φn

〉 |2 ≤ ‖ f ‖2
2,

where 〈·, ·〉 and ‖ ·‖2 are the inner product and the L2-norm defined on L2[a,b].

(b) (10 pts) Under what condition Bessel’s inequality becomes Parseval’s equality?

Answer: Bessel’s inequality always holds for any orthonormal set. If this set becomes an or-
thonormal basis, then the equality holds and becomes Parseval’s equality. This can also be
checked whether

〈
f ,φn

〉= 0 for all n ∈N implies f ≡ 0 almost everywhere or not.
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Problem 3 (25 pts) The nth Legendre polynomial is defined as

Pn(x)
∆= 1

2nn!

dn

d xn
(x2 −1)n , n = 0,1, . . .

The set {Pn}∞n=0 form an orthogonal basis for L2[−1,1]. Thus any f ∈ L2[−1,1] can be written
as:

f (x) =
∞∑

n=0
anPn(x).

From the above definition, we also know that Pn(x) is a polynomial of degree n. Thus,

a monomial xM can be always written as xM =
M∑

n=0
anPn(x), which is called the Legendre

expansion of xM .

(a) (10 pts) Obtain the Legendre expansion of x2.

Answer: First of all, from the formula, we get: P0(x) = 1, P1(x) = x, and P2(x) = 1
2 (3x2 −1). Let

us now write
x2 = a0P0(x)+a1P1(x)+a2P2(x).

Now, take an inner product of this equation with Pk (x), k = 0,1,2 gives us〈
x2,Pk

〉= ak‖Pk‖2
2

thanks to the orthogonality. We know that ‖Pk‖2
2 = 2/(2k+1) for all k (which can be derived

too). Thus,

a0 =
〈

x2,P0
〉

‖P0‖2
2

= 1

2

∫ 1

−1
x2 ·1dx = 1

3
.

a1 =
〈

x2,P1
〉

‖P1‖2
2

= 3

2

∫ 1

−1
x2 · x dx = 0.

a2 =
〈

x2,P0
〉

‖P2‖2
2

= 5

2

∫ 1

−1
x2 · 1

2
(3x2 −1)dx = 5

2

∫ 1

0
(3x4 −x2)dx = 5

2

(
3

5
− 1

3

)
= 2

3
.

Hence we have:

x2 = 1

3
P0(x)+ 2

3
P2(x).

(b) (15 pts) Let P1 be a set of all possible polynomial of degree 1, i.e., a set of all possible straight
lines in R2. What is the best linear L2-approximation to x2 in P1 over the interval [−1,1]? In
other words, what is the least squares line to approximate x2 over [−1,1]?

Answer: We know that the N th partial sum of an orthonormal expansion of a function in L2[−1,1]
is the best linear approximation in the sense of the least squares among the subspace spanned
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by those first N basis functions. Therefore, in this case, N = 2, i.e., using P0 and P1, we have
the expansion, 〈

x2,P0
〉

‖P0‖2
2

P0 +
〈

x2,P1
〉

‖P1‖2
2

P1 = 1

3
.

Hence, in this case, simply the constant y = 1
3 (i.e., a horizontal line) is better than any other

line with nonzero slope.
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Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

u′′+λu = 0, u′(0) = u′(1) = 0, on [0,1].

Answer: First of all, we use the method of characteristic equation, i.e., assuming u is of the form
er x , we derive the algebraic equation in terms of r . Clearly, we get r 2+λ= 0. Thus, r 2 =−λ.
We need to consider the sign of λ.

Case I: λ < 0. Then, we have r = ±p−λ ∈ R. Thus, a solution in this case is u(x) = Ae
p−λx +

Be−
p−λx where A,B are some constants. Then, u′(x) = p−λ

(
Ae

p−λx −Be−
p−λx

)
. Thus,

u′(0) = 0 gives us A = B since
p−λ 6= 0. Now, u′(1) = 0 gives us A

(
e
p−λ−e−

p−λ
)
= 0.

Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be
considered as an eigenfunction. So, λ cannot be negative.

Case II: λ = 0. Then, the original ODE reduces to u′′ = 0. Integrating twice, we have u(x) =
Ax+B where A,B some constants. Now using the boundary conditions u′(0) = u′(1) = 0, we
can easily show that A = 0. Thus, λ = 0 and u(x) = B 6= 0 form a pair of an eigenvalue and
the corresponding eigenfunction. Since ‖B‖ = |B |, the normalized eigenfunction is u(x) = 1.

Case III: λ > 0. Then, we have r = ±pλi, i.e., pure imaginary numbers. Thus a solution can be
written as:

u(x) = Aei
p
λx +Be−i

p
λx

= C1 cos
p
λx +C2 sin

p
λx

Now, since
u′(x) =−C1

p
λsin

p
λx +C2

p
λcos

p
λx,

the boundary condition u′(0) = 0 immediately gives us C2 = 0 since λ 6= 0. On the other hand,
u′(1) = 0 gives us

0 =−C1

p
λsin

p
λ

Since C1 6= 0 and λ 6= 0 (otherwise, the solution becomes the trivial solution), we must have
sin

p
λ = 0, i.e.,

p
λ = nπ where n ∈ Z \ {0}. Thus we have u(x) = C1 cosnπx. Now, the

case for n < 0 can be absorbed to n > 0 case by changing the sign of C1. So, we have the
eigenfunctions u(x) =C1 cosnπx, n ∈N. In order to have a unit norm, we compute for n ≥ 1:∫ 1

0
(cosnπx)2 dx =

∫ 1

0

1+cos2nπx

2
dx = 1

2

[
x + sin2nπx

2nπ

]1

0
= 1

2
.

Hence, the
p

2cosnπx has the unit norm.

Thus, summarizing the results of Cases II and III, the eigenvalues and the normalized eigen-
functions for this problem are:

λn = (nπ)2, n = 0,1, . . . u0(x) = 1,un(x) =p
2cosnπx, n = 1,2, . . .
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