Problem 1 (30 pts)

- (a) (10 pts) Compute the Fourier series of $f(\theta) = \theta$ on $[-\pi, \pi]$, which is 2π periodic.
- Answer: Since this is an odd function, we only need the coefficients with the sine terms, not the cosine terms. Hence, we need to compute, for $n \in \mathbb{N}$,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \theta \sin n\theta \, d\theta$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \theta \sin n\theta \, d\theta$$

$$= \frac{2}{\pi} \left\{ \left[\theta \cdot \frac{-\cos n\theta}{n} \right]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos n\theta \, d\theta \right\} \text{ via Integration by Parts}$$

$$= \frac{2}{\pi} \left\{ \pi \frac{(-1)^{n+1}}{n} + \frac{1}{n} \left[\frac{\sin n\theta}{n} \right]_{0}^{\pi} \right\}$$

$$= \frac{2(-1)^{n+1}}{n}.$$

Hence, we have

$$f(\theta) = \theta \sim \sum_{n=1}^{\infty} b_n \sin n\theta = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\theta.$$

(b) (10 pts) Compute the Fourier *cosine* series of $f(\theta) = \theta$ on $[0, \pi]$. Compare the decay rate of the coefficients with that of Part (a). Which coefficients decay faster?

Answer: Using the formula for the Fourier cosine coefficients over $[0, \pi]$, we have, for n = 1, ...,

$$a_n = \frac{2}{\pi} \int_0^{\pi} \theta \cos n\theta \, d\theta$$

= $\frac{2}{\pi} \left\{ \left[\theta \cdot \frac{\sin n\theta}{n} \right]_0^{\pi} - \frac{1}{n} \int_0^{\pi} \sin n\theta \, d\theta \right\}$ via Integration by Parts
= $\frac{2}{\pi} \left\{ 0 - \frac{1}{n} \left[\frac{-\cos n\theta}{n} \right]_0^{\pi} \right\}$
= $\frac{2}{\pi} \frac{(-1)^n - 1}{n^2}$.

Now, for n = 0, we have:

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \theta \, \mathrm{d}\theta = \frac{2}{\pi} \left(\frac{\pi^2}{2} - 0 \right) = \pi.$$

Hence, we have

$$f(\theta) = \theta \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\theta = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \cos n\theta = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\theta}{(2n-1)^2}.$$

Score of this page:_____

As for the decay rates, the solution of Part a gives us $b_n = O\left(\frac{1}{n}\right)$ whereas that of Part b is $a_n = O\left(\frac{1}{n^2}\right)$, which clearly decays faster than the former. This of course comes from the functions to be expanded into these Fourier series. In Part a, $f(\theta) = \theta$ on $[-\pi, \pi]$ and extended periodically over the entire \mathbb{R} . This periodic function is *discontinuous* at $\theta = n\pi$, $\forall n \in \mathbb{Z}$. On the other hand, in Part b, $f(\theta) = \theta$ on $[0, \pi]$ is extended as an even function because of the Fourier cosine series expansion. Therefore, it is the same as the ordinary Fourier series expansion of $f(\theta) = |\theta|$ on $[-\pi, \pi]$, which is *continuous* over \mathbb{R} even after periodic extension.

(c) (10 pts) Prove

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

using the result of Part (b).

Answer: We evaluate the Fourier cosine series of Part b at $\theta = 0$. Because the function $f(\theta) = \theta$ on $[-\pi, \pi]$ from the viewpoint of the Fourier cosine series expansion is the same as $f(\theta) = |\theta|$ on $[-\pi, \pi]$ from the viewpoint of the ordinary Fourier series expansion as discussed in Part b, we can use the pointwise convergent theorem of the Fourier series, since $f(\theta) = |\theta|$ after periodization with period 2π is clearly *piecewise smooth*. Hence,

$$f(0) = 0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos((2n-1)0)}{(2n-1)^2} = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

This leads to

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

Now,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)^2} + \frac{1}{(2n)^2} \right)$$
 Splitting even and odd terms
$$= \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^2}$$
 since both series are convergent
$$= \frac{\pi^2}{8} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Let $S \stackrel{\Delta}{=} \sum_{n=1}^{\infty} \frac{1}{n^2}$, then the above equation says:

$$S = \frac{\pi^2}{8} + \frac{S}{4} \iff S = \frac{\pi^2}{6}.$$

Score of this page:____

Problem 2 (20 pts) Let $\{\phi_n(x)\}_{n=1}^{\infty}$ be an orthonormal set in $L^2[a, b]$.

(a) (10 pts) For any function $f \in L^2[a, b]$, state *Bessel's inequality* for this function.

Answer: Bessel's inequality states:

$$\sum_{n=1}^{\infty} |\langle f, \phi_n \rangle|^2 \le ||f||_2^2$$

where $\langle \cdot, \cdot \rangle$ and $\|\cdot\|_2$ are the inner product and the L^2 -norm defined on $L^2[a, b]$.

- (b) (10 pts) Under what condition Bessel's inequality becomes *Parseval's equality*?
- Answer: Bessel's inequality always holds for any orthonormal *set*. If this set becomes an orthonormal *basis*, then the equality holds and becomes Parseval's equality. This can also be checked whether $\langle f, \phi_n \rangle = 0$ for all $n \in \mathbb{N}$ implies $f \equiv 0$ almost everywhere or not.

Problem 3 (25 pts) The *n*th Legendre polynomial is defined as

$$P_n(x) \stackrel{\Delta}{=} \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d} x^n} (x^2 - 1)^n, \quad n = 0, 1, \dots$$

The set $\{P_n\}_{n=0}^{\infty}$ form an *orthogonal* basis for $L^2[-1,1]$. Thus any $f \in L^2[-1,1]$ can be written as:

$$f(x) = \sum_{n=0}^{\infty} a_n P_n(x).$$

From the above definition, we also know that $P_n(x)$ is a polynomial of degree *n*. Thus, a monomial x^M can be always written as $x^M = \sum_{n=0}^M a_n P_n(x)$, which is called the *Legendre expansion* of x^M .

- (a) (10 pts) Obtain the Legendre expansion of x^2 .
- **Answer:** First of all, from the formula, we get: $P_0(x) = 1$, $P_1(x) = x$, and $P_2(x) = \frac{1}{2}(3x^2 1)$. Let us now write

$$x^{2} = a_{0}P_{0}(x) + a_{1}P_{1}(x) + a_{2}P_{2}(x).$$

Now, take an inner product of this equation with $P_k(x)$, k = 0, 1, 2 gives us

$$\langle x^2, P_k \rangle = a_k \|P_k\|_2^2$$

thanks to the orthogonality. We know that $||P_k||_2^2 = 2/(2k+1)$ for all k (which can be derived too). Thus,

$$a_{0} = \frac{\langle x^{2}, P_{0} \rangle}{\|P_{0}\|_{2}^{2}} = \frac{1}{2} \int_{-1}^{1} x^{2} \cdot 1 \, \mathrm{d}x = \frac{1}{3}.$$

$$a_{1} = \frac{\langle x^{2}, P_{1} \rangle}{\|P_{1}\|_{2}^{2}} = \frac{3}{2} \int_{-1}^{1} x^{2} \cdot x \, \mathrm{d}x = 0.$$

$$a_{2} = \frac{\langle x^{2}, P_{0} \rangle}{\|P_{2}\|_{2}^{2}} = \frac{5}{2} \int_{-1}^{1} x^{2} \cdot \frac{1}{2} (3x^{2} - 1) \, \mathrm{d}x = \frac{5}{2} \int_{0}^{1} (3x^{4} - x^{2}) \, \mathrm{d}x = \frac{5}{2} \left(\frac{3}{5} - \frac{1}{3}\right) = \frac{2}{3} \cdot \frac{3}{2} \int_{0}^{1} (3x^{4} - x^{2}) \, \mathrm{d}x = \frac{5}{2} \left(\frac{3}{5} - \frac{1}{3}\right) = \frac{2}{3} \cdot \frac{3}{2} \cdot \frac{1}{2} \left(\frac{3}{5} - \frac{1}{3}\right) = \frac{2}{3} \cdot \frac{1}{2} \left(\frac{3}{5} - \frac{1}{3}\right) = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} \left(\frac{3}{5} - \frac{1}{3}\right) = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac$$

Hence we have:

$$x^{2} = \frac{1}{3}P_{0}(x) + \frac{2}{3}P_{2}(x).$$

- (b) (15 pts) Let \mathcal{P}_1 be a set of all possible polynomial of degree 1, i.e., a set of all possible straight lines in \mathbb{R}^2 . What is the *best linear* L^2 -approximation to x^2 in \mathcal{P}_1 over the interval [-1,1]? In other words, what is the least squares line to approximate x^2 over [-1,1]?
- Answer: We know that the *N*th partial sum of an orthonormal expansion of a function in $L^2[-1,1]$ is the best linear approximation in the sense of the least squares among the subspace spanned

by those first N basis functions. Therefore, in this case, N = 2, i.e., using P_0 and P_1 , we have the expansion,

$$\frac{\langle x^2, P_0 \rangle}{\|P_0\|_2^2} P_0 + \frac{\langle x^2, P_1 \rangle}{\|P_1\|_2^2} P_1 = \boxed{\frac{1}{3}}.$$

Hence, in this case, simply the constant $y = \frac{1}{3}$ (i.e., a horizontal line) is better than any other line with nonzero slope.

Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

$$u'' + \lambda u = 0$$
, $u'(0) = u'(1) = 0$, on [0, 1].

- Answer: First of all, we use the method of characteristic equation, i.e., assuming *u* is of the form e^{rx} , we derive the algebraic equation in terms of *r*. Clearly, we get $r^2 + \lambda = 0$. Thus, $r^2 = -\lambda$. We need to consider the sign of λ .
- **Case I:** $\lambda < 0$. Then, we have $r = \pm \sqrt{-\lambda} \in \mathbb{R}$. Thus, a solution in this case is $u(x) = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}$ where *A*, *B* are some constants. Then, $u'(x) = \sqrt{-\lambda} \left(Ae^{\sqrt{-\lambda}x} Be^{-\sqrt{-\lambda}x}\right)$. Thus, u'(0) = 0 gives us A = B since $\sqrt{-\lambda} \neq 0$. Now, u'(1) = 0 gives us $A \left(e^{\sqrt{-\lambda}} e^{-\sqrt{-\lambda}x}\right) = 0$. Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be considered as an eigenfunction. So, λ cannot be negative.
- **Case II:** $\lambda = 0$. Then, the original ODE reduces to u'' = 0. Integrating twice, we have u(x) = Ax + B where *A*, *B* some constants. Now using the boundary conditions u'(0) = u'(1) = 0, we can easily show that A = 0. Thus, $\lambda = 0$ and $u(x) = B \neq 0$ form a pair of an eigenvalue and the corresponding eigenfunction. Since ||B|| = |B|, the normalized eigenfunction is u(x) = 1.
- **Case III:** $\lambda > 0$. Then, we have $r = \pm \sqrt{\lambda}i$, i.e., pure imaginary numbers. Thus a solution can be written as:

$$u(x) = Ae^{i\sqrt{\lambda}x} + Be^{-i\sqrt{\lambda}x}$$
$$= C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x$$

Now, since

$$u'(x) = -C_1 \sqrt{\lambda} \sin \sqrt{\lambda} x + C_2 \sqrt{\lambda} \cos \sqrt{\lambda} x,$$

the boundary condition u'(0) = 0 immediately gives us $C_2 = 0$ since $\lambda \neq 0$. On the other hand, u'(1) = 0 gives us

$$0 = -C_1 \sqrt{\lambda} \sin \sqrt{\lambda}$$

Since $C_1 \neq 0$ and $\lambda \neq 0$ (otherwise, the solution becomes the trivial solution), we must have $\sin \sqrt{\lambda} = 0$, i.e., $\sqrt{\lambda} = n\pi$ where $n \in \mathbb{Z} \setminus \{0\}$. Thus we have $u(x) = C_1 \cos n\pi x$. Now, the case for n < 0 can be absorbed to n > 0 case by changing the sign of C_1 . So, we have the eigenfunctions $u(x) = C_1 \cos n\pi x$, $n \in \mathbb{N}$. In order to have a unit norm, we compute for $n \ge 1$:

$$\int_0^1 (\cos n\pi x)^2 \, \mathrm{d}x = \int_0^1 \frac{1 + \cos 2n\pi x}{2} \, \mathrm{d}x = \frac{1}{2} \left[x + \frac{\sin 2n\pi x}{2n\pi} \right]_0^1 = \frac{1}{2}.$$

Hence, the $\sqrt{2}\cos n\pi x$ has the unit norm.

Thus, summarizing the results of Cases II and III, the eigenvalues and the normalized eigenfunctions for this problem are:

$$\lambda_n = (n\pi)^2$$
, $n = 0, 1, ...$ $u_0(x) = 1, u_n(x) = \sqrt{2}\cos n\pi x$, $n = 1, 2, ...$

Score of this page:____