Problem 1 (30 pts)
(a) (10 pts) Compute the Fourier series of $f(\theta)=\theta$ on $[-\pi, \pi]$, which is 2π periodic.

Answer: Since this is an odd function, we only need the coefficients with the sine terms, not the cosine terms. Hence, we need to compute, for $n \in \mathbb{N}$,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \theta \sin n \theta \mathrm{~d} \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi} \theta \sin n \theta \mathrm{~d} \theta \\
& =\frac{2}{\pi}\left\{\left[\theta \cdot \frac{-\cos n \theta}{n}\right]_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos n \theta \mathrm{~d} \theta\right\} \quad \text { via Integration by Parts } \\
& =\frac{2}{\pi}\left\{\pi \frac{(-1)^{n+1}}{n}+\frac{1}{n}\left[\frac{\sin n \theta}{n}\right]_{0}^{\pi}\right\} \\
& =\frac{2(-1)^{n+1}}{n}
\end{aligned}
$$

Hence, we have

$$
f(\theta)=\theta \sim \sum_{n=1}^{\infty} b_{n} \sin n \theta=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \theta .
$$

(b) (10 pts) Compute the Fourier cosine series of $f(\theta)=\theta$ on $[0, \pi]$. Compare the decay rate of the coefficients with that of Part (a). Which coefficients decay faster?

Answer: Using the formula for the Fourier cosine coefficients over $[0, \pi]$, we have, for $n=1, \ldots$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \theta \cos n \theta \mathrm{~d} \theta \\
& =\frac{2}{\pi}\left\{\left[\theta \cdot \frac{\sin n \theta}{n}\right]_{0}^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin n \theta \mathrm{~d} \theta\right\} \quad \text { via Integration by Parts } \\
& =\frac{2}{\pi}\left\{0-\frac{1}{n}\left[\frac{-\cos n \theta}{n}\right]_{0}^{\pi}\right\} \\
& =\frac{2}{\pi} \frac{(-1)^{n}-1}{n^{2}}
\end{aligned}
$$

Now, for $n=0$, we have:

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \theta \mathrm{d} \theta=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}-0\right)=\pi .
$$

Hence, we have

$$
f(\theta)=\theta \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \theta=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2}} \cos n \theta=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \theta}{(2 n-1)^{2}} .
$$

\qquad

As for the decay rates, the solution of Part a gives us $b_{n}=O\left(\frac{1}{n}\right)$ whereas that of Part b is $a_{n}=O\left(\frac{1}{n^{2}}\right)$, which clearly decays faster than the former. This of course comes from the functions to be expanded into these Fourier series. In Part a, $f(\theta)=\theta$ on $[-\pi, \pi]$ and extended periodically over the entire \mathbb{R}. This periodic function is discontinuous at $\theta=n \pi$, $\forall n \in \mathbb{Z}$. On the other hand, in Part $\mathrm{b}, f(\theta)=\theta$ on $[0, \pi]$ is extended as an even function because of the Fourier cosine series expansion. Therefore, it is the same as the ordinary Fourier series expansion of $f(\theta)=|\theta|$ on $[-\pi, \pi]$, which is continuous over \mathbb{R} even after periodic extension.
(c) (10 pts) Prove

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

using the result of Part (b).
Answer: We evaluate the Fourier cosine series of Part b at $\theta=0$. Because the function $f(\theta)=\theta$ on $[-\pi, \pi]$ from the viewpoint of the Fourier cosine series expansion is the same as $f(\theta)=|\theta|$ on $[-\pi, \pi]$ from the viewpoint of the ordinary Fourier series expansion as discussed in Part b , we can use the pointwise convergent theorem of the Fourier series, since $f(\theta)=|\theta|$ after periodization with period 2π is clearly piecewise smooth. Hence,

$$
f(0)=0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos ((2 n-1) 0)}{(2 n-1)^{2}}=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} .
$$

This leads to

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

Now,

$$
\begin{array}{rlrl}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\sum_{n=1}^{\infty}\left(\frac{1}{(2 n-1)^{2}}+\frac{1}{(2 n)^{2}}\right) & \text { Splitting even and odd terms } \\
& =\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}} & \text { since both series are convergent } \\
& =\frac{\pi^{2}}{8}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{array}
$$

Let $S \triangleq \sum_{n=1}^{\infty} \frac{1}{n^{2}}$, then the above equation says:

$$
S=\frac{\pi^{2}}{8}+\frac{S}{4} \Longleftrightarrow S=\frac{\pi^{2}}{6}
$$

Problem $2(20 \mathrm{pts})$ Let $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ be an orthonormal set in $L^{2}[a, b]$.
(a) (10 pts) For any function $f \in L^{2}[a, b]$, state Bessel's inequality for this function.

Answer: Bessel's inequality states:

$$
\sum_{n=1}^{\infty}\left|\left\langle f, \phi_{n}\right\rangle\right|^{2} \leq\|f\|_{2}^{2},
$$

where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|_{2}$ are the inner product and the L^{2}-norm defined on $L^{2}[a, b]$.
(b) (10 pts) Under what condition Bessel's inequality becomes Parseval's equality?

Answer: Bessel's inequality always holds for any orthonormal set. If this set becomes an orthonormal basis, then the equality holds and becomes Parseval's equality. This can also be checked whether $\left\langle f, \phi_{n}\right\rangle=0$ for all $n \in \mathbb{N}$ implies $f \equiv 0$ almost everywhere or not.

Problem 3 (25 pts) The nth Legendre polynomial is defined as

$$
P_{n}(x) \triangleq \frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2}-1\right)^{n}, \quad n=0,1, \ldots
$$

The set $\left\{P_{n}\right\}_{n=0}^{\infty}$ form an orthogonal basis for $L^{2}[-1,1]$. Thus any $f \in L^{2}[-1,1]$ can be written as:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)
$$

From the above definition, we also know that $P_{n}(x)$ is a polynomial of degree n. Thus, a monomial x^{M} can be always written as $x^{M}=\sum_{n=0}^{M} a_{n} P_{n}(x)$, which is called the Legendre expansion of x^{M}.
(a) (10 pts) Obtain the Legendre expansion of x^{2}.

Answer: First of all, from the formula, we get: $P_{0}(x)=1, P_{1}(x)=x$, and $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$. Let us now write

$$
x^{2}=a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x) .
$$

Now, take an inner product of this equation with $P_{k}(x), k=0,1,2$ gives us

$$
\left\langle x^{2}, P_{k}\right\rangle=a_{k}\left\|P_{k}\right\|_{2}^{2}
$$

thanks to the orthogonality. We know that $\left\|P_{k}\right\|_{2}^{2}=2 /(2 k+1)$ for all k (which can be derived too). Thus,

$$
\begin{gathered}
a_{0}=\frac{\left\langle x^{2}, P_{0}\right\rangle}{\left\|P_{0}\right\|_{2}^{2}}=\frac{1}{2} \int_{-1}^{1} x^{2} \cdot 1 \mathrm{~d} x=\frac{1}{3} \\
a_{1}=\frac{\left\langle x^{2}, P_{1}\right\rangle}{\left\|P_{1}\right\|_{2}^{2}}=\frac{3}{2} \int_{-1}^{1} x^{2} \cdot x \mathrm{~d} x=0 \\
a_{2}=\frac{\left\langle x^{2}, P_{0}\right\rangle}{\left\|P_{2}\right\|_{2}^{2}}=\frac{5}{2} \int_{-1}^{1} x^{2} \cdot \frac{1}{2}\left(3 x^{2}-1\right) \mathrm{d} x=\frac{5}{2} \int_{0}^{1}\left(3 x^{4}-x^{2}\right) \mathrm{d} x=\frac{5}{2}\left(\frac{3}{5}-\frac{1}{3}\right)=\frac{2}{3}
\end{gathered}
$$

Hence we have:

$$
x^{2}=\frac{1}{3} P_{0}(x)+\frac{2}{3} P_{2}(x) .
$$

(b) (15 pts) Let \mathcal{P}_{1} be a set of all possible polynomial of degree 1 , i.e., a set of all possible straight lines in \mathbb{R}^{2}. What is the best linear L^{2}-approximation to x^{2} in \mathcal{P}_{1} over the interval $[-1,1]$? In other words, what is the least squares line to approximate x^{2} over $[-1,1]$?

Answer: We know that the N th partial sum of an orthonormal expansion of a function in $L^{2}[-1,1]$ is the best linear approximation in the sense of the least squares among the subspace spanned
by those first N basis functions. Therefore, in this case, $N=2$, i.e., using P_{0} and P_{1}, we have the expansion,

$$
\frac{\left\langle x^{2}, P_{0}\right\rangle}{\left\|P_{0}\right\|_{2}^{2}} P_{0}+\frac{\left\langle x^{2}, P_{1}\right\rangle}{\left\|P_{1}\right\|_{2}^{2}} P_{1}=\frac{1}{3} .
$$

Hence, in this case, simply the constant $y=\frac{1}{3}$ (i.e., a horizontal line) is better than any other line with nonzero slope.

Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

$$
u^{\prime \prime}+\lambda u=0, \quad u^{\prime}(0)=u^{\prime}(1)=0, \quad \text { on }[0,1] .
$$

Answer: First of all, we use the method of characteristic equation, i.e., assuming u is of the form $\mathrm{e}^{r x}$, we derive the algebraic equation in terms of r. Clearly, we get $r^{2}+\lambda=0$. Thus, $r^{2}=-\lambda$. We need to consider the sign of λ.

Case I: $\lambda<0$. Then, we have $r= \pm \sqrt{-\lambda} \in \mathbb{R}$. Thus, a solution in this case is $u(x)=A \mathrm{e}^{\sqrt{-\lambda} x}+$ $B \mathrm{e}^{-\sqrt{-\lambda} x}$ where A, B are some constants. Then, $u^{\prime}(x)=\sqrt{-\lambda}\left(A \mathrm{e}^{\sqrt{-\lambda} x}-B \mathrm{e}^{-\sqrt{-\lambda} x}\right)$. Thus, $u^{\prime}(0)=0$ gives us $A=B$ since $\sqrt{-\lambda} \neq 0$. Now, $u^{\prime}(1)=0$ gives us $A\left(\mathrm{e}^{\sqrt{-\lambda}}-\mathrm{e}^{-\sqrt{-\lambda}}\right)=0$. Clearly, the only possibility is $A=B=0$. Thus, this is a trivial solution, and cannot be considered as an eigenfunction. So, λ cannot be negative.

Case II: $\lambda=0$. Then, the original ODE reduces to $u^{\prime \prime}=0$. Integrating twice, we have $u(x)=$ $A x+B$ where A, B some constants. Now using the boundary conditions $u^{\prime}(0)=u^{\prime}(1)=0$, we can easily show that $A=0$. Thus, $\lambda=0$ and $u(x)=B \neq 0$ form a pair of an eigenvalue and the corresponding eigenfunction. Since $\|B\|=|B|$, the normalized eigenfunction is $u(x)=1$.

Case III: $\lambda>0$. Then, we have $r= \pm \sqrt{\lambda}$ i, i.e., pure imaginary numbers. Thus a solution can be written as:

$$
\begin{aligned}
u(x) & =A \mathrm{e}^{\mathrm{i} \sqrt{\lambda} x}+B \mathrm{e}^{-\mathrm{i} \sqrt{\lambda} x} \\
& =C_{1} \cos \sqrt{\lambda} x+C_{2} \sin \sqrt{\lambda} x
\end{aligned}
$$

Now, since

$$
u^{\prime}(x)=-C_{1} \sqrt{\lambda} \sin \sqrt{\lambda} x+C_{2} \sqrt{\lambda} \cos \sqrt{\lambda} x
$$

the boundary condition $u^{\prime}(0)=0$ immediately gives us $C_{2}=0$ since $\lambda \neq 0$. On the other hand, $u^{\prime}(1)=0$ gives us

$$
0=-C_{1} \sqrt{\lambda} \sin \sqrt{\lambda}
$$

Since $C_{1} \neq 0$ and $\lambda \neq 0$ (otherwise, the solution becomes the trivial solution), we must have $\sin \sqrt{\lambda}=0$, i.e., $\sqrt{\lambda}=n \pi$ where $n \in \mathbb{Z} \backslash\{0\}$. Thus we have $u(x)=C_{1} \cos n \pi x$. Now, the case for $n<0$ can be absorbed to $n>0$ case by changing the sign of C_{1}. So, we have the eigenfunctions $u(x)=C_{1} \cos n \pi x, n \in \mathbb{N}$. In order to have a unit norm, we compute for $n \geq 1$:

$$
\int_{0}^{1}(\cos n \pi x)^{2} \mathrm{~d} x=\int_{0}^{1} \frac{1+\cos 2 n \pi x}{2} \mathrm{~d} x=\frac{1}{2}\left[x+\frac{\sin 2 n \pi x}{2 n \pi}\right]_{0}^{1}=\frac{1}{2} .
$$

Hence, the $\sqrt{2} \cos n \pi x$ has the unit norm.
Thus, summarizing the results of Cases II and III, the eigenvalues and the normalized eigenfunctions for this problem are:

$$
\lambda_{n}=(n \pi)^{2}, \quad n=0,1, \ldots \quad u_{0}(x)=1, u_{n}(x)=\sqrt{2} \cos n \pi x, \quad n=1,2, \ldots
$$

