Problem 1 (30 pts)
(a) (10 pts) Compute the Fourier series of f(0) =6 on [-mx, ], which is 27 periodic.

Answer: Since this is an odd function, we only need the coefficients with the sine terms, not the
cosine terms. Hence, we need to compute, for n € N,
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(b) (10 pts) Compute the Fourier cosine series of f(8) =60 on [0, 7]. Compare the decay rate of the
coefficients with that of Part (a). Which coefficients decay faster?

Answer: Using the formula for the Fourier cosine coefficients over [0, 7], we have, forn=1,...,
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As for the decay rates, the solution of Part a gives us b, = O (—) whereas that of Part b
n

is a, = O(% , which clearly decays faster than the former. This of course comes from
the functions to be expanded into these Fourier series. In Part a, f(0) =60 on [-n, 7] and
extended periodically over the entire R. This periodic function is discontinuous at 8 = n,
Vn € Z. On the other hand, in Part b, f(0) = 0 on [0,7] is extended as an even function
because of the Fourier cosine series expansion. Therefore, it is the same as the ordinary
Fourier series expansion of f(0) = |0| on [—m, 7], which is continuous over R even after

periodic extension.

(¢) (10 pts) Prove
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Answer: We evaluate the Fourier cosine series of Part b at § = 0. Because the function f(60) =
on [—m, 7] from the viewpoint of the Fourier cosine series expansion is the same as f(0) = |0|
on [—m, 7] from the viewpoint of the ordinary Fourier series expansion as discussed in Part
b, we can use the pointwise convergent theorem of the Fourier series, since f(0) = |0] after
periodization with period 27 is clearly piecewise smooth. Hence,
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Let S2 Z —, then the above equation says:
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Problem 2 (20 pts) Let {pn(X)})-, be an orthonormal set in I%[a,b).
(a) (10 pts) For any function f € L?[a, b], state Bessel’s inequality for this function.
Answer: Bessel’s inequality states:
(0,0
Y Kfon)P<IfI5,
n=1
where (-,-) and || - || are the inner product and the L[?-norm defined on L?[a, b].
(b) (10 pts) Under what condition Bessel’s inequality becomes Parseval’s equality?

Answer: Bessel’s inequality always holds for any orthonormal ser. If this set becomes an or-
thonormal basis, then the equality holds and becomes Parseval’s equality. This can also be
checked whether { f, ¢, ) = 0 for all n €N implies f =0 almost everywhere or not.
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Problem 3 (25 pts) The nth Legendre polynomial is defined as
n

2 n _
ﬂdxn(x -1) , n—O,l,...
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The set {P,,}%, form an orthogonal basis for I[%[-1,1]. Thus any f € [2[—1,1] can be written
as:

f) =) apPp(x).

n=0
From the above definition, we also know that P,(x) is a polynomial of degree n. Thus,
M
a monomial x™ can be always written as x™ = Z anPy(x), which is called the Legendre

n=0
expansion of xM.

(a) (10 pts) Obtain the Legendre expansion of x2.

Answer: First of all, from the formula, we get: Py(x) =1, P;(x) = x, and Py (x) = %(3x2 —-1). Let
us now write
x% = agPy(x) + a; P; (x) + ap P (x).

Now, take an inner product of this equation with Py (x), k=0,1,2 gives us
(%, Pi) = arll Pell3

thanks to the orthogonality. We know that || Py |I§ =2/(2k+1) for all k (which can be derived

too). Thus,
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Hence we have:

X = lP (x)+gP (x)
30 3 2

(b) (15 pts) Let P, be a set of all possible polynomial of degree 1, i.e., a set of all possible straight
lines in R?. What is the best linear Lz—approximation to x2 in P; over the interval [-1,1]? In
other words, what is the least squares line to approximate x> over [—1,1]?

Answer: We know that the Nth partial sum of an orthonormal expansion of a function in I2[-1,1]
is the best linear approximation in the sense of the least squares among the subspace spanned
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by those first IV basis functions. Therefore, in this case, N = 2, i.e., using Py and P;, we have
the expansion,
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Hence, in this case, simply the constant y = % (i.e., a horizontal line) is better than any other
line with nonzero slope.
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Problem 4 (25 pts) Find the eigenvalues and normalized eigenfunctions for the problem

W' +Au=0, WO =u'(1)=0, on]l0,1].

Answer: First of all, we use the method of characteristic equation, i.e., assuming u is of the form
e"*, we derive the algebraic equation in terms of 7. Clearly, we get 7>+ = 0. Thus, r? = - A.
We need to consider the sign of A.

CaseI: 1 <0. Then, we have r = +v/—A € R. Thus, a solution in this case is u(x) = Aemx +
Be~V=A* where A, B are some constants. Then, u/(x) = v—/l(Ae‘/:lx —Be_mx). Thus,
u'(0) = 0 gives us A = B since V-1 # 0. Now, u/(1) = 0 gives us A(em—e_m) =0.
Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be
considered as an eigenfunction. So, A cannot be negative.

Case II: A =0. Then, the original ODE reduces to u” = 0. Integrating twice, we have u(x) =
Ax+ B where A, B some constants. Now using the boundary conditions u'(0) = u/(1) =0, we
can easily show that A=0. Thus, A =0 and u(x) = B # 0 form a pair of an eigenvalue and
the corresponding eigenfunction. Since || B|| = | B|, the normalized eigenfunction is u(x) = 1.

Case III: 1> 0. Then, we have r = +V/1i, i.e., pure imaginary numbers. Thus a solution can be
written as:

Ael\//Tx + Be—iﬂx
Cj cos Vax+ C,sin Vx

ulx) =

Now, since

u'(x) = —C;VAsinVAx + CoVAcosVAx,

the boundary condition u'(0) = 0 immediately gives us C, = 0 since A # 0. On the other hand,

u'(1) = 0 gives us
0=-CG; VsinvV

Since C; # 0 and A # 0 (otherwise, the solution becomes the trivial solution), we must have
sinvA =0, i.e., VA = nm where n € Z\{0}. Thus we have u(x) = C;cosnnx. Now, the
case for n < 0 can be absorbed to n > 0 case by changing the sign of C;. So, we have the
eigenfunctions u(x) = C;cosnnx, n € N. In order to have a unit norm, we compute for n = 1:
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Hence, the v/2 cos nmx has the unit norm.

Thus, summarizing the results of Cases II and III, the eigenvalues and the normalized eigen-
functions for this problem are:

Ay = (nm)?, n=01,... ug(x) =14 u,x) = V2cosnmx, n=1,2,...
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