Problem 1 (30 pts)
(a) (10 pts) Compute the Fourier series of $f(\theta)=\theta^{2}$ on $(-\pi, \pi)$, which is 2π periodic.

Answer: Since this function is an even function over $(-\pi, \pi)$, the Fourier series becomes a Fourier cosine series. Thus, we only need the Fourier cosine coefficients $a_{n}, n=0,1,2, \ldots$. For a_{n}, $n \geq 1$, we have:

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \theta^{2} \cos n \theta \mathrm{~d} \theta \\
& =\frac{2}{\pi}\left\{\left[\frac{\theta^{2} \sin n \theta}{n}\right]_{0}^{\pi}-\frac{1}{n} \int_{0}^{\pi} 2 \theta \sin n \theta \mathrm{~d} \theta\right\} \quad \text { (Integration by Parts) } \\
& =-\frac{4}{n \pi} \int_{0}^{\pi} \theta \sin n \theta \mathrm{~d} \theta \\
& =-\frac{4}{n \pi}\left\{\left[-\frac{\theta \cos n \theta}{n}\right]_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos n \theta \mathrm{~d} \theta\right\} \\
& =-\frac{4}{n \pi} \cdot \frac{\pi(-1)^{n+1}}{n} \\
& =4 \frac{(-1)^{n}}{n^{2}}
\end{aligned}
$$

Now, a_{0} can be computed as:

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \theta^{2} \mathrm{~d} \theta=\frac{2 \pi^{2}}{3}
$$

Hence we have

$$
\theta^{2} \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \theta
$$

(b) (10 pts) Prove

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

using the result of Part (a).
Answer: Evaluate the Fourier series of $f(\theta)$ of Part (a) at $\theta=\pi$. (Another easy way is to evaluate it at $\theta=0$, but I omit the proof for $\theta=0$ case here). Since $\theta=\pi$ is a point of continuity, we have

$$
\begin{aligned}
f(\pi) & =\pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi \\
& =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n^{2}} \\
& =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} .
\end{aligned}
$$

Hence, it is easy to derive

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{4}\left(\pi^{2}-\frac{\pi^{2}}{3}\right)=\frac{\pi^{2}}{6} .
$$

(c) (10 pts) Using the result of Part (a), compute the Fourier series of $g(\theta)=\theta$ on $(-\pi, \pi)$, which is also 2π periodic.
Hint: Use the derivative formula.
Answer: Because the 2π periodic function θ^{2} is continuous and piecewise smooth over \mathbb{R}, we can differentiate the result of Part (a) as:

$$
2 \theta \sim 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(-\sin n \theta)
$$

from which we can easily derive:

$$
\theta \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \theta .
$$

Problem 2 (20 pts) Consider a function space, $L^{2}[-1,1]$.
(a) (4 pts) Assuming each function in $L^{2}[-1,1]$ is complex-valued, i.e., $f:[-1,1] \rightarrow \mathbb{C}$, state the standard definition of the L^{2}-norm and the inner product of this space.

Answer: Clearly, the standard L^{2}-norm for a function $f \in L^{2}[-1,1]$ is:

$$
\|f\|_{2} \triangleq\left(\int_{-1}^{1}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

and the inner product of $f, g \in L^{2}[-1,1]$ is defined as:

$$
\langle f, g\rangle \triangleq \int_{-1}^{1} f(x) \overline{g(x)} \mathrm{d} x
$$

(b) (4 pts) State the Cauchy-Schwarz inequality for this space.

Answer: The Cauchy-Schwarz inequality for $L^{2}[-1,1]$ is, for any $f, g \in L^{2}[-1,1]$,

$$
|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2}
$$

where the equality holds if and only if f is proportional to g almost everywhere.
(c) (6 pts) The space $L^{2}[-1,1]$ is known to be complete with respect to the L^{2}-norm. State the definition of the completeness of this space.

Answer: Let $\left\{f_{n}\right\} \subset L^{2}[-1,1]$ be a Cauchy sequence in $L^{2}[-1,1]$, i.e., $\left\|f_{m}-f_{n}\right\|_{2} \rightarrow 0$ as $m, n \rightarrow \infty$. The completeness means that every Cauchy sequence in $L^{2}[-1,1]$ is a convergent sequence, i.e., there exists $f \in L^{2}[-1,1]$ such that $\left\|f_{n}-f\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$.
(d) (6 pts) Show an example of an orthonormal set in $L^{2}[-1,1]$, which is not complete (i.e., not an orthonormal basis for $L^{2}[-1,1]$).

Answer: Consider the following set of functions:

$$
\phi_{n}(x)=\left\{\begin{array}{ll}
0 & \text { if }-1 \leq x \leq 0, \\
\sqrt{2} \sin n \pi x & \text { if } 0 \leq x \leq 1
\end{array} \quad n=1,2, \ldots\right.
$$

Then, this set of function is an orthonormal set because:

$$
\begin{aligned}
\left\langle\phi_{m}, \phi_{n}\right\rangle & =\int_{-1}^{1} \phi_{m}(x) \phi_{n}(x) \mathrm{d} x \\
& =\int_{0}^{1} 2 \sin m \pi x \sin n \pi x \mathrm{~d} x \\
& = \begin{cases}\int_{0}^{1}(\cos (m-n) \pi x-\cos (m+n) \pi x) \mathrm{d} x & \text { if } m \neq n ; \\
\int_{0}^{1}(1-\cos 2 m \pi x) \mathrm{d} x & \text { if } m=n\end{cases} \\
& = \begin{cases}{\left[\frac{\sin (m-n) \pi x}{(m-n) \pi}-\frac{\sin (m+n) \pi x}{(m+n) \pi}\right]_{0}^{1}} & \text { if } m \neq n ; \\
{\left[x-\frac{\sin 2 m \pi x}{2 m \pi}\right]_{0}^{1}} & \text { if } m=n\end{cases} \\
& =\delta_{m n .} .
\end{aligned}
$$

However, this set clearly cannot represent all the functions in $L^{2}[-1,1]$ since $\phi_{n}(x)=0$ for $n=0,1, \ldots$, i.e., $\left\{\phi_{n}\right\}_{1}^{\infty}$ cannot satisfy Parseval's equality for functions in $L^{2}[-1,1]$. Therefore, $\left\{\phi_{n}\right\}_{1}^{\infty}$ is not a complete orthonormal set in $L^{2}[-1,1]$.

Problem 3 (25 pts) The first three Legendre polynomials are:

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) .
$$

(a) (10 pts) Show that they are mutually orthogonal. Moreover, compute their orthonormal version, $\phi_{0}(x), \phi_{1}(x), \phi_{2}(x)$.

Answer: They are mutually orthogonal because:

$$
\begin{aligned}
& \left\langle P_{0}, P_{1}\right\rangle=\int_{-1}^{1} 1 \cdot x \mathrm{~d} x=0 \quad \text { because } x \text { is an odd function. } \\
& \left\langle P_{0}, P_{2}\right\rangle=\int_{-1}^{1} 1 \cdot \frac{1}{2}\left(3 x^{2}-1\right) \mathrm{d} x=\frac{1}{2}\left[x^{3}-x\right]_{-1}^{1}=0 \\
& \left\langle P_{1}, P_{2}\right\rangle=\int_{-1}^{1} x \cdot \frac{1}{2}\left(3 x^{2}-1\right) \mathrm{d} x=0 \quad \text { because } x^{3} \text { and } x \text { are odd functions. }
\end{aligned}
$$

Now, let's compute the L^{2}-norm of them.

$$
\begin{aligned}
& \left\|P_{0}\right\|_{2}=\sqrt{\int_{-1}^{1} 1^{2} \mathrm{~d} x}=\sqrt{2} \\
& \left\|P_{1}\right\|_{2}=\sqrt{\int_{-1}^{1} x^{2} \mathrm{~d} x}=\sqrt{\frac{2}{3}} \\
& \left\|P_{2}\right\|_{2}=\sqrt{\int_{-1}^{1} \frac{1}{4}\left(3 x^{2}-1\right)^{2} \mathrm{~d} x}=\sqrt{\frac{1}{2} \int_{0}^{1}\left(9 x^{4}-6 x^{2}+1\right) \mathrm{d} x}=\sqrt{\frac{1}{2}\left(\frac{9}{5}-2+1\right)}=\sqrt{\frac{2}{5}} .
\end{aligned}
$$

Note that one can also use the formula $\left\|P_{n}\right\|_{2}=\sqrt{\frac{2}{2 n+1}}, n=0,1,2, \ldots$. Therefore, we have:

$$
\begin{aligned}
\phi_{0} & =\frac{P_{0}}{\left\|P_{0}\right\|_{2}}=\frac{1}{\sqrt{2}} \\
\phi_{1} & =\frac{P_{1}}{\left\|P_{1}\right\|_{2}}=\sqrt{\frac{3}{2}} x \\
\phi_{2} & =\frac{P_{2}}{\left\|P_{2}\right\|_{2}}=\frac{1}{2} \sqrt{\frac{5}{2}}\left(3 x^{2}-1\right)
\end{aligned}
$$

(b) (15 pts) Determine a_{0} and a_{1} that satisfy

$$
\min _{a_{0}, a_{1} \in \mathbb{R}} \int_{-1}^{1}\left|\mathrm{e}^{-x}-\left(a_{0}+a_{1} x\right)\right|^{2} \mathrm{~d} x .
$$

In other words, find the best line (i.e., the best linear approximation) to e^{-x} on $[-1,1]$ in the sense of the least squares.

Answer: Because $\left\{\phi_{n}\right\}_{0}^{\infty}$ form an orthonormal basis for $L^{2}[-1,1]$, the only thing we need is to expand e^{x} with respect to ϕ_{n} 's we obtained in Part (a).

$$
\begin{aligned}
\left\langle\mathrm{e}^{-x}, \phi_{0}\right\rangle & =\frac{1}{\sqrt{2}} \int_{-1}^{1} \mathrm{e}^{-x} \mathrm{~d} x=\frac{-\mathrm{e}^{-1}+\mathrm{e}^{1}}{\sqrt{2}}=\frac{\mathrm{e}-\mathrm{e}^{-1}}{\sqrt{2}} \\
\left\langle\mathrm{e}^{-x}, \phi_{1}\right\rangle & =\sqrt{\frac{3}{2}} \int_{-1}^{1} x \mathrm{e}^{-x} \mathrm{~d} x=\sqrt{\frac{3}{2}}\left\{\left[-x \mathrm{e}^{-x}\right]_{-1}^{1}+\int_{-1}^{1} \mathrm{e}^{-x} \mathrm{~d} x\right\} \quad \text { Integration by Parts } \\
& =\sqrt{\frac{3}{2}}\left\{-\mathrm{e}^{-1}-\mathrm{e}^{1}+\left(-\mathrm{e}^{-1}+\mathrm{e}^{1}\right)\right\} \\
& =-\sqrt{6} \mathrm{e}^{-1}
\end{aligned}
$$

Hence, the least squares line approximation to e^{-x} over $[-1,1]$ is:

$$
\begin{aligned}
\frac{\mathrm{e}-\mathrm{e}^{-1}}{\sqrt{2}} \phi_{0}(x)-\sqrt{6} \mathrm{e}^{-1} \phi_{1}(x) & =\frac{\mathrm{e}-\mathrm{e}^{-1}}{\sqrt{2}} \frac{1}{\sqrt{2}}-\sqrt{6} \mathrm{e}^{-1} \sqrt{\frac{3}{2}} x \\
& =\frac{\mathrm{e}-\mathrm{e}^{-1}}{2}-3 \mathrm{e}^{-1} x .
\end{aligned}
$$

Problem 4 (25 pts) Consider the following eigenvalue problem:

$$
u^{\prime \prime}+\lambda u=0, \quad u^{\prime}(0)=0, \quad u(1)=0, \quad \text { on }[0,1] .
$$

Find the eigenvalues and normalized eigenfunctions.
Answer: First of all, we use the method of characteristic equation, i.e., assuming u is of the form $\mathrm{e}^{r x}$, we derive the algebraic equation in terms of r. Clearly, we get $r^{2}+\lambda=0$. Thus, $r^{2}=-\lambda$. We need to consider the sign of λ.

Case I: $\lambda<0$. Then, we have $r= \pm \sqrt{-\lambda} \in \mathbb{R}$. Thus, a solution in this case is $u(x)=A \mathrm{e}^{\sqrt{-\lambda} x}+$ $B \mathrm{e}^{-\sqrt{-\lambda} x}$ where A, B are some constants. Then, $u^{\prime}(x)=\sqrt{-\lambda}\left(A \mathrm{e}^{\sqrt{-\lambda} x}-B \mathrm{e}^{-\sqrt{-\lambda} x}\right)$. Thus, $u^{\prime}(0)=0$ gives us $A-B=0$ because $\sqrt{-\lambda} \neq 0$. Now, $u(1)=0$ gives us $A \mathrm{e}^{\sqrt{-\lambda}}+B \mathrm{e}^{-\sqrt{-\lambda}}=0$. Clearly, the only possibility is $A=B=0$. Thus, this is a trivial solution, and cannot be considered as an eigenfunction. So, λ cannot be negative.

Case II: $\lambda=0$. Then, the original ODE reduces to $u^{\prime \prime}=0$. Integrating twice, we have $u(x)=$ $A x+B$ where A, B some constants. Now using the boundary conditions $u^{\prime}(0)=u(1)=0$, we can easily show that $A=B=0$. Thus, λ cannot be 0 .

Case III: $\lambda>0$. Then, we have $r= \pm \sqrt{\lambda} \mathrm{i}$, i.e., pure imaginary numbers. Thus a solution can be written as:

$$
\begin{aligned}
u(x) & =A \mathrm{e}^{\mathrm{i} \sqrt{\lambda} x}+B \mathrm{e}^{-\mathrm{i} \sqrt{\lambda} x} \\
& =C_{1} \cos \sqrt{\lambda} x+C_{2} \sin \sqrt{\lambda} x
\end{aligned}
$$

Now, since

$$
u^{\prime}(x)=-C_{1} \sqrt{\lambda} \sin \sqrt{\lambda} x+C_{2} \sqrt{\lambda} \cos \sqrt{\lambda} x,
$$

the boundary condition $u^{\prime}(0)=0$ immediately gives us $C_{2}=0$. On the other hand, $u(1)=0$ gives us

$$
0=C_{1} \cos \sqrt{\lambda}
$$

Since C_{1} cannot be 0 and $\lambda \neq 0$ (otherwise, the solution becomes the trivial solution), we must have $\cos \sqrt{\lambda}=0$, i.e., $\sqrt{\lambda}=\left(n+\frac{1}{2}\right) \pi$ where $n \in \mathbb{Z}$. Thus we have $u(x)=C_{1} \cos \left(n+\frac{1}{2}\right) \pi x$. Now, the case for $n<0$ can be absorbed to $n>0$ case because of the evenness of cos function. So, we have the eigenfunctions $u(x)=C_{1} \cos \left(n+\frac{1}{2}\right) \pi x, n=0,1,2, \ldots$. So the eigenvalues of this problem is:

$$
\lambda=\left(n+\frac{1}{2}\right)^{2} \pi^{2}, \quad n=0,1, \ldots
$$

In order to have a unit norm, we first compute

$$
\int_{0}^{1}\left(\cos \left(n+\frac{1}{2}\right) \pi x\right)^{2} \mathrm{~d} x=\int_{0}^{1} \frac{1+\cos (2 n+1) \pi x}{2} \mathrm{~d} x=\frac{1}{2}\left[x+\frac{\sin (2 n+1) \pi x}{(2 n+1) \pi}\right]_{0}^{1}=\frac{1}{2} .
$$

Hence, $\sqrt{2} \cos \left(n+\frac{1}{2}\right) \pi x$ has the unit norm. Thus, the normalized eigenfunctions are:

$$
\sqrt{2} \cos \left(n+\frac{1}{2}\right) \pi x, \quad n=0,1,2, \ldots
$$

