Problem 1 (30 pts)

- (a) (10 pts) Compute the Fourier series of $f(\theta) = \theta^2$ on $(-\pi, \pi)$, which is 2π periodic.
- **Answer:** Since this function is an even function over $(-\pi, \pi)$, the Fourier series becomes a Fourier cosine series. Thus, we only need the Fourier cosine coefficients a_n , n = 0, 1, 2, ... For a_n , $n \ge 1$, we have:

$$a_n = \frac{2}{\pi} \int_0^{\pi} \theta^2 \cos n\theta \, d\theta$$

= $\frac{2}{\pi} \left\{ \left[\frac{\theta^2 \sin n\theta}{n} \right]_0^{\pi} - \frac{1}{n} \int_0^{\pi} 2\theta \sin n\theta \, d\theta \right\}$ (Integration by Parts)
= $-\frac{4}{n\pi} \int_0^{\pi} \theta \sin n\theta \, d\theta$
= $-\frac{4}{n\pi} \left\{ \left[-\frac{\theta \cos n\theta}{n} \right]_0^{\pi} + \frac{1}{n} \int_0^{\pi} \cos n\theta \, d\theta \right\}$
= $-\frac{4}{n\pi} \cdot \frac{\pi (-1)^{n+1}}{n}$
= $4 \frac{(-1)^n}{n^2}$.

Now, a_0 can be computed as:

$$a_0 = \frac{2}{\pi} \int_0^\pi \theta^2 \,\mathrm{d}\theta = \frac{2\pi^2}{3}$$

Hence we have

$$\theta^2 \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n\theta \,.$$

(b) (10 pts) Prove

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

using the result of Part (a).

Answer: Evaluate the Fourier series of $f(\theta)$ of Part (a) at $\theta = \pi$. (Another easy way is to evaluate it at $\theta = 0$, but I omit the proof for $\theta = 0$ case here). Since $\theta = \pi$ is a point of continuity, we have

$$f(\pi) = \pi^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n\pi$$
$$= \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{2n}}{n^2}$$
$$= \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Score of this page:_____

Hence, it is easy to derive

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{4} \left(\pi^2 - \frac{\pi^2}{3} \right) = \frac{\pi^2}{6}.$$

(c) (10 pts) Using the result of Part (a), compute the Fourier series of $g(\theta) = \theta$ on $(-\pi, \pi)$, which is also 2π periodic.

Hint: Use the derivative formula.

Answer: Because the 2π periodic function θ^2 is *continuous and piecewise smooth* over \mathbb{R} , we can differentiate the result of Part (a) as:

$$2\theta \sim 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (-\sin n\theta),$$

from which we can easily derive:

$$\theta \sim 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\theta.$$

- (a) (4 pts) Assuming each function in $L^2[-1,1]$ is complex-valued, i.e., $f:[-1,1] \to \mathbb{C}$, state the standard definition of the L^2 -norm and the inner product of this space.
- **Answer:** Clearly, the standard L^2 -norm for a function $f \in L^2[-1, 1]$ is:

$$||f||_2 \stackrel{\Delta}{=} \left(\int_{-1}^1 |f(x)|^2 \,\mathrm{d}x\right)^{1/2},$$

and the inner product of $f, g \in L^2[-1, 1]$ is defined as:

$$\langle f,g\rangle \stackrel{\Delta}{=} \int_{-1}^{1} f(x)\overline{g(x)} \,\mathrm{d}x.$$

(b) (4 pts) State the Cauchy-Schwarz inequality for this space.

Answer: The Cauchy-Schwarz inequality for $L^2[-1, 1]$ is, for any $f, g \in L^2[-1, 1]$,

$$\left|\langle f,g\rangle\right| \leq \|f\|_2 \|g\|_2,$$

where the equality holds if and only if f is proportional to g almost everywhere.

- (c) (6 pts) The space $L^2[-1,1]$ is known to be *complete* with respect to the L^2 -norm. State the definition of the completeness of this space.
- Answer: Let $\{f_n\} \subset L^2[-1,1]$ be a Cauchy sequence in $L^2[-1,1]$, i.e., $||f_m f_n||_2 \to 0$ as $m, n \to \infty$. The completeness means that every Cauchy sequence in $L^2[-1,1]$ is a convergent sequence, i.e., there exists $f \in L^2[-1,1]$ such that $||f_n - f||_2 \to 0$ as $n \to \infty$.

(d) (6 pts) Show an example of an orthonormal *set* in $L^2[-1,1]$, which is not *complete* (i.e., not an orthonormal *basis* for $L^2[-1,1]$).

Answer: Consider the following set of functions:

$$\phi_n(x) = \begin{cases} 0 & \text{if } -1 \le x \le 0, \\ \sqrt{2} \sin n\pi x & \text{if } 0 \le x \le 1. \end{cases} \qquad n = 1, 2, \dots$$

Then, this set of function is an orthonormal set because:

$$\begin{aligned} \left< \phi_{m}, \phi_{n} \right> &= \int_{-1}^{1} \phi_{m}(x) \phi_{n}(x) \, \mathrm{d}x \\ &= \int_{0}^{1} 2 \sin m\pi x \sin n\pi x \, \mathrm{d}x \\ &= \begin{cases} \int_{0}^{1} (\cos(m-n)\pi x - \cos(m+n)\pi x) \, \mathrm{d}x & \text{if } m \neq n; \\ \int_{0}^{1} (1 - \cos 2m\pi x) \, \mathrm{d}x & \text{if } m = n \end{cases} \\ &= \begin{cases} \left[\frac{\sin(m-n)\pi x}{(m-n)\pi} - \frac{\sin(m+n)\pi x}{(m+n)\pi} \right]_{0}^{1} & \text{if } m \neq n; \\ \left[x - \frac{\sin 2m\pi x}{2m\pi} \right]_{0}^{1} & \text{if } m = n \end{cases} \\ &= \delta_{mn}. \end{aligned}$$

However, this set clearly cannot represent all the functions in $L^2[-1,1]$ since $\phi_n(x) = 0$ for $n = 0, 1, ..., i.e., {\phi_n}_1^\infty$ cannot satisfy *Parseval's equality* for functions in $L^2[-1,1]$. Therefore, ${\phi_n}_1^\infty$ is not a complete orthonormal set in $L^2[-1,1]$.

Problem 3 (25 pts) The first three Legendre polynomials are:

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$.

(a) (10 pts) Show that they are mutually orthogonal. Moreover, compute their ortho*normal* version, $\phi_0(x), \phi_1(x), \phi_2(x)$.

Answer: They are mutually orthogonal because:

$$\langle P_0, P_1 \rangle = \int_{-1}^{1} 1 \cdot x \, dx = 0$$
 because x is an odd function.

$$\langle P_0, P_2 \rangle = \int_{-1}^{1} 1 \cdot \frac{1}{2} (3x^2 - 1) \, dx = \frac{1}{2} [x^3 - x]_{-1}^1 = 0$$

$$\langle P_1, P_2 \rangle = \int_{-1}^{1} x \cdot \frac{1}{2} (3x^2 - 1) \, dx = 0$$
 because x^3 and x are odd functions.

Now, let's compute the L^2 -norm of them.

$$\begin{aligned} \|P_0\|_2 &= \sqrt{\int_{-1}^1 1^2 \, dx} = \sqrt{2} \\ \|P_1\|_2 &= \sqrt{\int_{-1}^1 x^2 \, dx} = \sqrt{\frac{2}{3}} \\ \|P_2\|_2 &= \sqrt{\int_{-1}^1 \frac{1}{4} (3x^2 - 1)^2 \, dx} = \sqrt{\frac{1}{2} \int_0^1 (9x^4 - 6x^2 + 1) \, dx} = \sqrt{\frac{1}{2} \left(\frac{9}{5} - 2 + 1\right)} = \sqrt{\frac{2}{5}} \end{aligned}$$

Note that one can also use the formula $||P_n||_2 = \sqrt{\frac{2}{2n+1}}$, n = 0, 1, 2, ... Therefore, we have:

$$\phi_{0} = \frac{P_{0}}{\|P_{0}\|_{2}} = \frac{1}{\sqrt{2}}$$

$$\phi_{1} = \frac{P_{1}}{\|P_{1}\|_{2}} = \sqrt{\frac{3}{2}x}$$

$$\phi_{2} = \frac{P_{2}}{\|P_{2}\|_{2}} = \frac{1}{2}\sqrt{\frac{5}{2}}(3x^{2}-1)$$

(b) (15 pts) Determine a_0 and a_1 that satisfy

$$\min_{a_0,a_1\in\mathbb{R}}\int_{-1}^1 |e^{-x} - (a_0 + a_1x)|^2 \,\mathrm{d}x.$$

In other words, find the best line (i.e., the best linear approximation) to e^{-x} on [-1,1] in the sense of the least squares.

Answer: Because $\{\phi_n\}_0^\infty$ form an orthonormal basis for $L^2[-1,1]$, the only thing we need is to expand e^x with respect to ϕ_n 's we obtained in Part (a).

$$\begin{aligned} \langle e^{-x}, \phi_0 \rangle &= \frac{1}{\sqrt{2}} \int_{-1}^1 e^{-x} dx = \frac{-e^{-1} + e^1}{\sqrt{2}} = \frac{e - e^{-1}}{\sqrt{2}} \\ \langle e^{-x}, \phi_1 \rangle &= \sqrt{\frac{3}{2}} \int_{-1}^1 x e^{-x} dx = \sqrt{\frac{3}{2}} \left\{ \left[-x e^{-x} \right]_{-1}^1 + \int_{-1}^1 e^{-x} dx \right\} & \text{Integration by Parts} \\ &= \sqrt{\frac{3}{2}} \left\{ -e^{-1} - e^1 + (-e^{-1} + e^1) \right\} \\ &= -\sqrt{6} e^{-1} \end{aligned}$$

Hence, the least squares line approximation to e^{-x} over [-1,1] is:

$$\frac{e - e^{-1}}{\sqrt{2}} \phi_0(x) - \sqrt{6} e^{-1} \phi_1(x) = \frac{e - e^{-1}}{\sqrt{2}} \frac{1}{\sqrt{2}} - \sqrt{6} e^{-1} \sqrt{\frac{3}{2}} x$$
$$= \frac{e - e^{-1}}{2} - 3 e^{-1} x.$$

Problem 4 (25 pts) Consider the following eigenvalue problem:

$$u'' + \lambda u = 0$$
, $u'(0) = 0$, $u(1) = 0$, on $[0, 1]$.

Find the eigenvalues and normalized eigenfunctions.

- Answer: First of all, we use the method of characteristic equation, i.e., assuming *u* is of the form e^{rx} , we derive the algebraic equation in terms of *r*. Clearly, we get $r^2 + \lambda = 0$. Thus, $r^2 = -\lambda$. We need to consider the sign of λ .
- **Case I:** $\lambda < 0$. Then, we have $r = \pm \sqrt{-\lambda} \in \mathbb{R}$. Thus, a solution in this case is $u(x) = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}$ where *A*, *B* are some constants. Then, $u'(x) = \sqrt{-\lambda} \left(Ae^{\sqrt{-\lambda}x} Be^{-\sqrt{-\lambda}x}\right)$. Thus, u'(0) = 0 gives us A B = 0 because $\sqrt{-\lambda} \neq 0$. Now, u(1) = 0 gives us $Ae^{\sqrt{-\lambda}} + Be^{-\sqrt{-\lambda}} = 0$. Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be considered as an eigenfunction. So, λ cannot be negative.
- **Case II:** $\lambda = 0$. Then, the original ODE reduces to u'' = 0. Integrating twice, we have u(x) = Ax + B where *A*, *B* some constants. Now using the boundary conditions u'(0) = u(1) = 0, we can easily show that A = B = 0. Thus, λ cannot be 0.
- **Case III:** $\lambda > 0$. Then, we have $r = \pm \sqrt{\lambda}i$, i.e., pure imaginary numbers. Thus a solution can be written as:

$$u(x) = Ae^{i\sqrt{\lambda}x} + Be^{-i\sqrt{\lambda}x}$$
$$= C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x$$

Now, since

$$u'(x) = -C_1 \sqrt{\lambda} \sin \sqrt{\lambda} x + C_2 \sqrt{\lambda} \cos \sqrt{\lambda} x,$$

the boundary condition u'(0) = 0 immediately gives us $C_2 = 0$. On the other hand, u(1) = 0 gives us

$$0 = C_1 \cos \sqrt{\lambda}$$

Since C_1 cannot be 0 and $\lambda \neq 0$ (otherwise, the solution becomes the trivial solution), we must have $\cos \sqrt{\lambda} = 0$, i.e., $\sqrt{\lambda} = (n + \frac{1}{2})\pi$ where $n \in \mathbb{Z}$. Thus we have $u(x) = C_1 \cos(n + \frac{1}{2})\pi x$. Now, the case for n < 0 can be absorbed to n > 0 case because of the evenness of cos function. So, we have the eigenfunctions $u(x) = C_1 \cos(n + \frac{1}{2})\pi x$, n = 0, 1, 2, ... So the eigenvalues of this problem is:

$$\lambda = \left(n + \frac{1}{2}\right)^2 \pi^2, \quad n = 0, 1, \dots$$

In order to have a unit norm, we first compute

$$\int_0^1 \left(\cos\left(n + \frac{1}{2}\right) \pi x \right)^2 dx = \int_0^1 \frac{1 + \cos(2n+1)\pi x}{2} dx = \frac{1}{2} \left[x + \frac{\sin(2n+1)\pi x}{(2n+1)\pi} \right]_0^1 = \frac{1}{2}.$$

Score of this page:____

Hence, $\sqrt{2}\cos\left(n+\frac{1}{2}\right)\pi x$ has the unit norm. Thus, the normalized eigenfunctions are:

$$\sqrt{2}\cos\left(n+\frac{1}{2}\right)\pi x, \quad n=0,1,2,\dots$$