MAT 129: Fourier Analysis Supplementary Notes II by Naoki Saito

The Fourier Inversion Theorem

- The Fourier transform \mathcal{F} was defined initially on $L^1(\mathbb{R})$, a space of integrable functions, and \mathcal{F} : $L^1(\mathbb{R}) \to BC(\mathbb{R}) = C(\mathbb{R}) \cap L^{\infty}(\mathbb{R}).$
- However, \hat{f} , the Fourier transform of $f \in L^1$, may not be in L^1 . An example: $f(x) = \chi_{(-\frac{1}{2},\frac{1}{2})}(x) \Rightarrow \hat{f}(\xi) = \operatorname{sinc}(\xi) = \frac{\sin \pi \xi}{\pi \xi} \notin L^1$.
- The Inverse Fourier Transform: For $f \in L^1$, $\check{f}(x) = \int_{-\infty}^{\infty} f(\xi) e^{2\pi i \xi x} d\xi$.
- [The Fourier Inversion Theorem] If both f and \hat{f} are in L^1 , then $(\hat{f}) = (\check{f}) = f$ almost everywhere.
- There are many functions in L¹ whose Fourier transforms are also in L¹; one needs only a little smoothness of f for necessary decay of f̂ as |ξ| → ∞.
 An example: If f ∈ C²(ℝ), f' and f'' are both in L¹, then 𝔅{f''}(ξ) = -(2πξ)² f̂(ξ) ∈ BC(ℝ). This boundedness implies that |f̂(ξ)| ≤ C/(1 + ξ²). This, in turn, implies that f̂ ∈ L¹.

The Fourier Transforms on L²

- The previous remark leads to the L² theory of the Fourier transforms. In general, simply assuming f ∈ L² is not enough; ∫_{-∞}[∞] f(x)e^{-2πiξx} dx may not converge.
 An example: f(x) = sinc(x) = sinπx/πx ∈ L², but not in L¹.
- We will overcome this problem as follows. Define a subspace of L¹, X = {f ∈ L¹ | f̂ ∈ L¹}. We first note that for such functions, we can have the Parseval equality: ⟨f,g⟩ = ⟨f̂, ĝ⟩ as well as the Plancherel equality. Also, for any f ∈ X, f, f̂ ∈ BC(ℝ) as the remark after the Fourier inversion theorem. This implies that both f and f̂ are also in L²; i.e., X ⊂ L² (because f ∈ L¹ ∩ BC implies f ∈ L² thanks to the theorem: L^p ∩ L^r ⊂ L^q for 0 dense in L².
- We can proceed as follows: for any f ∈ L², we can find a sequence {f_n} ⊂ X such that ||f_n-f||₂ → 0 as n → ∞. {f_n} ⊂ X means that {f̂_n} ⊂ X. Now using the Plancherel equality to this sequence, we can see ||f̂_n f̂_m||₂ = ||f_n f_m||₂ → 0 as m, n → ∞. In other words, {f̂_n} is a *Cauchy sequence* in L². Since L² is *complete*, there exists the limit of f̂_n in L², and we *define* this limit as f̂, the Fourier transform of f ∈ L².
- [The Plancherel Theorem] For any $f, g \in L^2$, $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$ and $||f||_2 = ||\hat{f}||_2$.
- Finally, we can use all these facts for computing the Fourier transform of L^2 functions as follows: Suppose we set $\phi(x) = \hat{f}(x)$ where $\hat{f} \in L^2$. Then, $\hat{\phi}(\xi) = f(-\xi)$. An example: $\phi(x) = \operatorname{sinc}(x) \in L^2$. Then, $\hat{\phi}(\xi) = \chi_{(-\frac{1}{2},\frac{1}{2})}(\xi)$.