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Problem 1 (30 pts)

(a) (10 pts) Compute the Fourier series of f (θ) = θ2 on (−π,π), which is 2π periodic.

Answer: Since this function is an even function over (−π,π), the Fourier series becomes a Fourier
cosine series. Thus, we only need the Fourier cosine coefficients an , n = 0,1,2, . . .. For an ,
n ≥ 1, we have:

an = 2

π

∫ π

0
θ2 cosnθdθ

= 2

π

{[
θ2 sinnθ

n

]π
0
− 1

n

∫ π

0
2θ sinnθdθ

}
(Integration by Parts)

= − 4

nπ

∫ π

0
θ sinnθdθ

= − 4

nπ

{[
−θcosnθ

n

]π
0
+ 1

n

∫ π

0
cosnθdθ

}
= − 4

nπ
· π(−1)n+1

n

= 4
(−1)n

n2
.

Now, a0 can be computed as:

a0 = 2

π

∫ π

0
θ2 dθ = 2π2

3
.

Hence we have

θ2 ∼ a0

2
+

∞∑
n=1

an cosnx = π2

3
+4

∞∑
n=1

(−1)n

n2
cosnθ .

(b) (10 pts) Prove
∞∑

n=1

1

n2
= π2

6
,

using the result of Part (a).

Answer: Evaluate the Fourier series of f (θ) of Part (a) at θ =π. (Another easy way is to evaluate
it at θ = 0, but I omit the proof for θ = 0 case here). Since θ = π is a point of continuity, we
have

f (π) = π2 = π2

3
+4

∞∑
n=1

(−1)n

n2
cosnπ

= π2

3
+4

∞∑
n=1

(−1)2n

n2

= π2

3
+4

∞∑
n=1

1

n2
.
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Hence, it is easy to derive

∞∑
n=1

1

n2
= 1

4

(
π2 − π2

3

)
= π2

6
.

(c) (10 pts) Using the result of Part (a), compute the Fourier series of g (θ) = θ on (−π,π), which
is also 2π periodic.

Hint: Use the derivative formula.

Answer: Because the 2π periodic function θ2 is continuous and piecewise smooth over R, we can
differentiate the result of Part (a) as:

2θ ∼ 4
∞∑

n=1

(−1)n

n
(−sinnθ),

from which we can easily derive:

θ ∼ 2
∞∑

n=1

(−1)n+1

n
sinnθ.
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Problem 2 (20 pts) Consider a function space, L2[−1,1].

(a) (4 pts) Assuming each function in L2[−1,1] is complex-valued, i.e., f : [−1,1] → C, state the
standard definition of the L2-norm and the inner product of this space.

Answer: Clearly, the standard L2-norm for a function f ∈ L2[−1,1] is:

‖ f ‖2
∆=

(∫ 1

−1
| f (x)|2 dx

)1/2

,

and the inner product of f , g ∈ L2[−1,1] is defined as:

〈
f , g

〉 ∆= ∫ 1

−1
f (x)g (x)dx.

(b) (4 pts) State the Cauchy-Schwarz inequality for this space.

Answer: The Cauchy-Schwarz inequality for L2[−1,1] is, for any f , g ∈ L2[−1,1],∣∣〈 f , g
〉∣∣≤ ‖ f ‖2‖g‖2,

where the equality holds if and only if f is proportional to g almost everywhere.

(c) (6 pts) The space L2[−1,1] is known to be complete with respect to the L2-norm. State the
definition of the completeness of this space.

Answer: Let
{

fn
}⊂ L2[−1,1] be a Cauchy sequence in L2[−1,1], i.e., ‖ fm− fn‖2 → 0 as m,n →∞.

The completeness means that every Cauchy sequence in L2[−1,1] is a convergent sequence,
i.e., there exists f ∈ L2[−1,1] such that ‖ fn − f ‖2 → 0 as n →∞.
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(d) (6 pts) Show an example of an orthonormal set in L2[−1,1], which is not complete (i.e., not an
orthonormal basis for L2[−1,1]).

Answer: Consider the following set of functions:

φn(x) =
{

0 if −1 ≤ x ≤ 0,p
2sinnπx if 0 ≤ x ≤ 1.

n = 1,2, . . .

Then, this set of function is an orthonormal set because:

〈
φm ,φn

〉 =
∫ 1

−1
φm(x)φn(x)dx

=
∫ 1

0
2sinmπx sinnπx dx

=
{∫ 1

0 (cos(m −n)πx −cos(m +n)πx) dx if m 6= n;∫ 1
0 (1−cos2mπx) dx if m = n

=


[
sin(m−n)πx

(m−n)π − sin(m+n)πx
(m+n)π

]1

0
if m 6= n;[

x − sin2mπx
2mπ

]1
0 if m = n

= δm n .

However, this set clearly cannot represent all the functions in L2[−1,1] since φn(x) = 0 for
n = 0,1, . . ., i.e., {φn}∞1 cannot satisfy Parseval’s equality for functions in L2[−1,1]. There-
fore, {φn}∞1 is not a complete orthonormal set in L2[−1,1].
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Problem 3 (25 pts) The first three Legendre polynomials are:

P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 −1).

(a) (10 pts) Show that they are mutually orthogonal. Moreover, compute their orthonormal ver-
sion, φ0(x),φ1(x),φ2(x).

Answer: They are mutually orthogonal because:

〈P0,P1〉 =
∫ 1

−1
1 ·x dx = 0 because x is an odd function.

〈P0,P2〉 =
∫ 1

−1
1 · 1

2
(3x2 −1)dx = 1

2

[
x3 −x

]1
−1 = 0

〈P1,P2〉 =
∫ 1

−1
x · 1

2
(3x2 −1)dx = 0 because x3 and x are odd functions.

Now, let’s compute the L2-norm of them.

‖P0‖2 =
√∫ 1

−1
12 dx =p

2

‖P1‖2 =
√∫ 1

−1
x2 dx =

√
2

3

‖P2‖2 =
√∫ 1

−1

1

4
(3x2 −1)2 dx =

√
1

2

∫ 1

0
(9x4 −6x2 +1)dx =

√
1

2

(
9

5
−2+1

)
=

√
2

5
.

Note that one can also use the formula ‖Pn‖2 =
√

2
2n+1 , n = 0,1,2, . . .. Therefore, we have:

φ0 = P0

‖P0‖2
= 1p

2

φ1 = P1

‖P1‖2
=

√
3

2
x

φ2 = P2

‖P2‖2
= 1

2

√
5

2
(3x2 −1) .
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(b) (15 pts) Determine a0 and a1 that satisfy

min
a0,a1∈R

∫ 1

−1
|e−x − (a0 +a1x)|2 dx.

In other words, find the best line (i.e., the best linear approximation) to e−x on [−1,1] in the
sense of the least squares.

Answer: Because {φn}∞0 form an orthonormal basis for L2[−1,1], the only thing we need is to
expand ex with respect to φn’s we obtained in Part (a).

〈
e−x ,φ0

〉 = 1p
2

∫ 1

−1
e−x dx = −e−1 +e1

p
2

= e−e−1

p
2〈

e−x ,φ1
〉 =

√
3

2

∫ 1

−1
xe−x dx =

√
3

2

{[−xe−x]1
−1 +

∫ 1

−1
e−x dx

}
Integration by Parts

=
√

3

2

{−e−1 −e1 + (−e−1 +e1)
}

= −p6e−1

Hence, the least squares line approximation to e−x over [−1,1] is:

e−e−1

p
2

φ0(x)−p
6e−1φ1(x) = e−e−1

p
2

1p
2
−p

6e−1

√
3

2
x

= e−e−1

2
−3e−1x .
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Problem 4 (25 pts) Consider the following eigenvalue problem:

u′′+λu = 0, u′(0) = 0, u(1) = 0, on [0,1].

Find the eigenvalues and normalized eigenfunctions.

Answer: First of all, we use the method of characteristic equation, i.e., assuming u is of the form
er x , we derive the algebraic equation in terms of r . Clearly, we get r 2+λ= 0. Thus, r 2 =−λ.
We need to consider the sign of λ.

Case I: λ < 0. Then, we have r = ±p−λ ∈ R. Thus, a solution in this case is u(x) = Ae
p−λx +

Be−
p−λx where A,B are some constants. Then, u′(x) = p−λ

(
Ae

p−λx −Be−
p−λx

)
. Thus,

u′(0) = 0 gives us A−B = 0 because
p−λ 6= 0. Now, u(1) = 0 gives us Ae

p−λ+Be−
p−λ = 0.

Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be
considered as an eigenfunction. So, λ cannot be negative.

Case II: λ = 0. Then, the original ODE reduces to u′′ = 0. Integrating twice, we have u(x) =
Ax +B where A,B some constants. Now using the boundary conditions u′(0) = u(1) = 0, we
can easily show that A = B = 0. Thus, λ cannot be 0.

Case III: λ > 0. Then, we have r = ±pλi, i.e., pure imaginary numbers. Thus a solution can be
written as:

u(x) = Aei
p
λx +Be−i

p
λx

= C1 cos
p
λx +C2 sin

p
λx

Now, since
u′(x) =−C1

p
λsin

p
λx +C2

p
λcos

p
λx,

the boundary condition u′(0) = 0 immediately gives us C2 = 0. On the other hand, u(1) = 0
gives us

0 =C1 cos
p
λ

Since C1 cannot be 0 and λ 6= 0 (otherwise, the solution becomes the trivial solution), we must
have cos

p
λ = 0, i.e.,

p
λ = (

n + 1
2

)
π where n ∈ Z. Thus we have u(x) = C1 cos

(
n + 1

2

)
πx.

Now, the case for n < 0 can be absorbed to n > 0 case because of the evenness of cos
function. So, we have the eigenfunctions u(x) = C1 cos

(
n + 1

2

)
πx, n = 0,1,2, . . .. So the

eigenvalues of this problem is:

λ=
(
n + 1

2

)2

π2, n = 0,1, . . .

In order to have a unit norm, we first compute∫ 1

0

(
cos

(
n + 1

2

)
πx

)2

dx =
∫ 1

0

1+cos(2n +1)πx

2
dx = 1

2

[
x + sin(2n +1)πx

(2n +1)π

]1

0
= 1

2
.
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Hence,
p

2cos
(
n + 1

2

)
πx has the unit norm. Thus, the normalized eigenfunctions are:

p
2cos

(
n + 1

2

)
πx, n = 0,1,2, . . . .
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