Problem 1 (30 pts)
(a) (10 pts) Compute the Fourier series of f(0) =62 on (—m, ), which is 27 periodic.

Answer: Since this function is an even function over (-7, ), the Fourier series becomes a Fourier
cosine series. Thus, we only need the Fourier cosine coefficients a,, n=0,1,2,.... For a,,
n =1, we have:
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(b) (10 pts) Prove
- 1 =
Las
using the result of Part (a).

Answer: Evaluate the Fourier series of f(0) of Part (a) at @ = w. (Another easy way is to evaluate
it at @ = 0, but I omit the proof for 8 = 0 case here). Since 6 = 7 is a point of continuity, we
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Hence, it is easy to derive
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(c) (10 pts) Using the result of Part (a), compute the Fourier series of g(f) =6 on (—m,7), which
is also 27 periodic.

Hint: Use the derivative formula.

Answer: Because the 27 periodic function 62 is continuous and piecewise smooth over R, we can
differentiate the result of Part (a) as:
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from which we can easily derive:
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Problem 2 (20 pts) Consider a function space, L2[-1,1].

(a) (4 pts) Assuming each function in [%[-1,1] is complex-valued, i.e., f:[-1,1] — C, state the
standard definition of the L2-norm and the inner product of this space.

Answer: Clearly, the standard L2-norm for a function f € L?[-1,1] is:

LT (fll If(x)lzdx)m,

and the inner product of f, g € L?[—1,1] is defined as:

(f.g)= f_ llf(x)@dx.

(b) (4 pts) State the Cauchy-Schwarz inequality for this space.

Answer: The Cauchy-Schwarz inequality for L[%[-1,1] is, for any f,g€ I2[-1,1],

IKF. &) < Iflzlgla,

where the equality holds if and only if f is proportional to g almost everywhere.

(¢) (6 pts) The space L?[-1,1] is known to be complete with respect to the L?>-norm. State the
definition of the completeness of this space.

Answer: Let{f,} < L?[-1,1] be a Cauchy sequence in L?[—1,1], i.€., | f— full2 — 0 as m,n — co.
The completeness means that every Cauchy sequence in L?[—1,1] is a convergent sequence,
1.e., there exists f € L[%[-1,1] such that | fn—=fll2—0as n— oo.
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(d) (6 pts) Show an example of an orthonormal sef in L2[-1,1], which is not complete (i.e., not an
orthonormal basis for L2[-1, 1]).

Answer: Consider the following set of functions:

() 0 if-1<x<0, 12
X) = n=12,...
" V2sinnnx ifo<x<]l.

Then, this set of function is an orthonormal set because:
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However, this set clearly cannot represent all the functions in I[%[-1,1] since ¢n(x) =0 for
n=0,1,..., ie., {¢p,}]° cannot satisfy Parseval’s equality for functions in I[%[-1,1]. There-
fore, {(/)n} is not a complete orthonormal set in L?[-1,1].
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Problem 3 (25 pts) The first three Legendre polynomials are:

Pox)=1, Pi(x)=x, pz(x):%mz—n.

(a) (10 pts) Show that they are mutually orthogonal. Moreover, compute their orthonormal ver-
sion, ¢o(x), ¢1(x), P2 (x).

Answer: They are mutually orthogonal because:

(Po, P1)

1
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-1
(Po, P2) [111(32 Ddx= 2 [*-x]", =0
, = -—(3x° - x=—-(x"—-x| , =
0, L2 L2 2 -1
L |
(P1,Py) = fx-E(sz—l)dx:O because x> and x are odd functions.
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Now, let’s compute the L?>-norm of them.
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Note that one can also use the formula || P,]l2 = 1/ ZL n=0,1,2,.... Therefore, we have:
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(b) (15 pts) Determine ap and a; that satisfy

1
min f le™ — (ap + a; x)|> dx.
ap,a1€R J_q

In other words, find the best line (i.e., the best linear approximation) to e on [—1,1] in the
sense of the least squares.

Answer: Because {pn}y> form an orthonormal basis for I[%[-1,1], the only thing we need is to
expand e* with respect to ¢b,,’s we obtained in Part (a).

1 ! —el+el e-e!
e_x, = —‘[ e_xdx: =
ene) =l Vi V2
3 ! 3 1 1
(e 1) = 5[ xe *dx= 5{[—xe_x]_l+f e_xdx} Integration by Parts
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Hence, the least squares line approximation to e™* over [—1,1] is:
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Problem 4 (25 pts) Consider the following eigenvalue problem:

u"+lu=0, u0)=0ul)=0, on]0,1].

Find the eigenvalues and normalized eigenfunctions.

Answer First of all, we use the method of characteristic equation, i.e., assuming uis of the form
e, we derive the algebraic equation in terms of r. Clearly, we get r>+A = 0. Thus, 1% = —A.
We need to consider the sign of A.

Case I: 2 <0. Then, we have r = £v—A € R. Thus, a solution in this case is u(x) = AeVAx 4

‘/_x where A, B are some constants. Then, u/(x) = v — (Ae‘/_M Be™ ‘/_x) Thus,

u'(0) =0 gives us A— B =0 because v—A # 0. Now, u(1) =0 gives us Ae‘/__ + Be_‘/__ =0.

Clearly, the only possibility is A = B = 0. Thus, this is a trivial solution, and cannot be
considered as an eigenfunction. So, A cannot be negative.

Case II: A =0. Then, the original ODE reduces to u” = 0. Integrating twice, we have u(x) =
Ax+ B where A, B some constants. Now using the boundary conditions u'(0) = u(1) =0, we
can easily show that A= B =0. Thus, A cannot be 0.

Case III: 1> 0. Then, we have r = +V/1i, i.e., pure imaginary numbers. Thus a solution can be
written as:
ux) = AelVM* 4 geivAX
CycosVAx + CysinVAx

Now, since

u'(x) = —C;VAsinVAx + CoVAcos VAx,

the boundary condition u'(0) = 0 immediately gives us C, = 0. On the other hand, u(1) =
gives us
0=CjcosVA

Since C; cannotbe 0 and A #0 (otherwise the solution becomes the trivial solution), we must
have cosvA =0, i.e., VA= (n+1)m where n € Z. Thus we have u(x) = Cycos(n+3)nx
Now, the case for n < 0 can be absorbed to n > 0 case because of the evenness of cos
function. So, we have the eigenfunctions u(x) = Cycos(n+ %)ﬂx, n=0,1,2,.... So the
eigenvalues of this problem is:

1)\2
A:(n+§) 7%, n=0,1,...

In order to have a unit norm, we first compute

1 1 2 11+cos@n+1nx 1 sin@n+Dax]t 1
cos|n+—|nx| dx= dx=-|x+——F—| =-.
0 2 0 2 2 Cn+nm |, 2
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Hence, v/2cos (n + %) nx has the unit norm. Thus, the normalized eigenfunctions are:

1
\/Ecos(n+z)ﬂx, n=012,....
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