MAT 132A Homework assignment \#1

Exercise 3.1

$$
\sum_{x} P_{X \mid Y}(x \mid y)=\frac{\sum_{x} P(x, y)}{P_{Y}(y)}=\frac{P_{Y}(y)}{P_{Y}(y)}=1
$$

Exercise 3.3

$$
\begin{aligned}
& E[X \mid Y=1]=2 \\
& E[X \mid Y=2]=\frac{5}{3} \\
& E[X \mid Y=3]=\frac{12}{5}
\end{aligned}
$$

Exercise 3.4
No.

Exercise 3.8

a)
$E[X]=E[X \mid$ first roll is 6$] \frac{1}{6}+E[X \mid$ fist roll is not 6$] \frac{5}{6}=\frac{1}{6}+(1+E[X]) \frac{5}{6}$ implying that $E[X]=6$
b) $E[X \mid Y=1]=1+E[X]=7$
c)

$$
\begin{aligned}
E[X \mid Y=5]=1\left(\frac{1}{5}\right) & +2\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)+3\left(\frac{4}{5}\right)^{2}\left(\frac{1}{5}\right) \\
& +4\left(\frac{4}{5}\right)^{3}\left(\frac{1}{5}\right)+6\left(\frac{4}{5}\right)^{4}\left(\frac{1}{6}\right) \\
& +7\left(\frac{4}{5}\right)^{4}\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)+\ldots
\end{aligned}
$$

Exercise 3.9

$$
\begin{aligned}
E[X \mid Y=y] & =\sum_{x} x P\{X=x \mid Y=y\} \\
& =\sum_{x} x P\{X=x\} \quad \text { by independence } \\
& =E[X]
\end{aligned}
$$

Exercise 3.14

$$
\begin{aligned}
f_{X \left\lvert\, X<\frac{1}{2}\right.}(x) & =\frac{f(x)}{P\{X<1 / 2\}}, x<\frac{1}{2} \\
& =\frac{1}{1 / 2}=2
\end{aligned}
$$

Hence, $E\left[X \left\lvert\, X<\frac{1}{2}\right.\right]=\int_{0}^{1 / 2} 2 x d x=\frac{1}{4}$

Exercise 3.16

a) Let us first rewrite $f(x, y)$ in a more convenient form by "completing the square" in the exponent:

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\right. \\
& \left.\times\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-\frac{2 \rho\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right]\right\} \\
= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x-\mu_{x}}{\sigma_{x}}-\rho \frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\}
\end{aligned}
$$

Now if we let
$a=\frac{1}{2\left(1-\rho^{2}\right)} \quad$ and $\quad z=\frac{x-\mu_{x}}{\sigma_{x}}-\rho \frac{y-\mu_{y}}{\sigma_{y}} \quad$ so that $\quad d x=\sigma_{x} d z$ it follows that

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}} \int_{-\infty}^{\infty} e^{-a z^{2}} \sigma_{x} d z \\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}} \sigma_{x} \sqrt{\frac{\pi}{a}} \\
& =\frac{1}{2 \pi \sigma_{y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}} \sqrt{2 \pi\left(1-\rho^{2}\right)} \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{y}} e^{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}} \\
& =N\left(\mu_{y}, \sigma_{y}^{2}\right)
\end{aligned}
$$

as was to be shown. In order to find $f_{X}(x)$ we can again rearrange $f(x, y)$ in the following convenient way, just as we did above:

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}\right\} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{y-\mu_{y}}{\sigma_{y}}-\rho \frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}\right\}
\end{aligned}
$$

Then, letting:
$a=\frac{1}{2\left(1-\rho^{2}\right)} \quad$ and $\quad z=\frac{y-\mu_{y}}{\sigma_{y}}-\rho \frac{x-\mu_{x}}{\sigma_{x}} \quad$ so that $\quad d y=\sigma_{y} d z$ we get:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}} \int_{-\infty}^{\infty} e^{-a z^{2}} \sigma_{y} d z \\
& =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}} \sigma_{y} \sqrt{\frac{\pi}{a}} \\
& =\frac{1}{2 \pi \sigma_{x} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}} \sqrt{2 \pi\left(1-\rho^{2}\right)} \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}} \\
& =N\left(\mu_{x}, \sigma_{x}^{2}\right)
\end{aligned}
$$

b) In part a) we rewrote $f(x, y)$ as:

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x-\mu_{x}}{\sigma_{x}}-\rho \frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\}
\end{aligned}
$$

and we found that:

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{y}} e^{-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}}
$$

Therefore:

$$
\begin{aligned}
f_{X \mid Y}(x \mid y)= & \frac{f(x, y)}{f_{Y}(y)} \\
= & \frac{1}{\sqrt{2 \pi} \sigma_{x} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x-\mu_{x}}{\sigma_{x}}-\rho \frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\} \\
= & \frac{1}{\sqrt{2 \pi} \sigma_{x} \sqrt{1-\rho^{2}}} \\
& \times \exp \left\{-\frac{1}{2}\left(\frac{x-\left(\mu_{x}+\left(\rho \sigma_{x} / \sigma_{y}\right)\left(y-\mu_{y}\right)\right)}{\sigma_{x} \sqrt{1-\rho^{2}}}\right)^{2}\right\} \\
= & N\left(\mu_{x}+\left(\rho \sigma_{x} / \sigma_{y}\right)\left(y-\mu_{y}\right), \sigma_{x}^{2}\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

Exercise 3.20

a)

$$
\begin{aligned}
f(x \mid \text { disease }) & =\frac{P\{\text { disease } \mid x\} f(x)}{\int P\{\text { disease } \mid x\} f(x) d x} \\
& =\frac{P\{x\} f(x)}{\int P\{x\} f(x) d x}
\end{aligned}
$$

b)

$$
f(x \mid \text { no disease })=\frac{[1-P(x)] f(x)}{\int[1-P(x)] f(x) d x}
$$

c)

$$
\frac{f(x \mid \text { disease })}{f(x \mid \text { no disease })}=C \frac{P(x)}{1-P(x)}
$$

where C does not depend on x.

Exercise 3.21

a) $X=\sum_{i=1}^{N} T_{i}$
b) Clearly N is geometric with parameter $1 / 3$; thus $E[N]=3$.
c) Since T_{N} is the travel time corresponding to the choice leading to freedom, it follows that $T_{N}=2$, and so $E\left[T_{N}\right]=2$.
d) Given that $N=n$, the travel times $T_{i}, i=1, \ldots, n-1$ are each equally likely to be either 3 or 5 (since we know that a door leading back to the mine is selected), whereas T_{n} is equal to 2 (since that choice led to safety). Hence,

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} T_{i} \mid N=n\right] & =E\left[\sum_{i=1}^{n-1} T_{i} \mid N=n\right]+E\left[T_{n} \mid N=n\right] \\
& =4(n-1)+2
\end{aligned}
$$

e) Since part d) is equivalent to the equation

$$
E\left[\sum_{i=1}^{N} T_{i} \mid N\right]=4 N-2
$$

we see from parts a) and b) that

$$
E[X]=4 E[N]-2=10
$$

