MAT 132A Homework assignment \#2

Exercise 3.24

In all parts, let X denote the random variable whose expectation is desired, and start by conditioning on the result of the first flip. Also, h stands for heads and t for tails.
(a)

$$
\begin{aligned}
E[X] & =E[X \mid h] p+E[X \mid t](1-p) \\
& =\left(1+\frac{1}{1-p}\right) p+\left(1+\frac{1}{p}\right)(1-p) \\
& =1+p /(1-p)+(1-p) / p
\end{aligned}
$$

(b)
$E[X]=(1+E[$ numebr of heads before first tail] $) p+1(1-p)$

$$
=1+p /(1-p)+(1-p) / p
$$

(c) Interchanging p and $1-p$ in (b) gives result: $1+(1-p) / p-$ ($1-p$)
d)

$$
\begin{aligned}
E[X] & =(1+\text { answer from (a) }) p+(1+2 / p)(1-p) \\
& =(2+p /(1-p)+(1-p) / p) p+(1+2 / p)(1-p)
\end{aligned}
$$

Exercise 3.30

$$
E[N]=\sum_{j=1}^{m} E\left[N \mid X_{0}=j\right] p(j)=\sum_{j=1}^{m} \frac{1}{p(j)} p(j)=m
$$

Exercise 3.34 Let U denote the point of the break. Then,
$\left.E[L(x)]=\int_{0}^{1} E[L(x)] \mid U=u\right] d u=\int_{0}^{x}(1-u) d u+\int_{x}^{1} u d u=x-x^{2}+1 / 2$
Calculus shows that it is maximized when $x=1 / 2$.

Exercise 3.35

(a) $E[X]=(2.6+3+3.4) / 3=3$
(b) $E\left[X^{2}\right]=\left(2.6+2.6^{2}+3+9+3.4+3.4^{2}\right) / 3=12.1067$, and $\operatorname{Var}(X)=3.1067$

Exercise 3.43

By definition of $\operatorname{Var}(X \mid Y)$), we have that

$$
\begin{aligned}
\operatorname{Var}(X \mid Y) & =E\left[X^{2}-2 X E[X \mid Y]+E^{2}[X \mid Y](Y)\right. \\
& =E\left[X^{2} \mid Y\right]-2 E[X \mid Y] E[X \mid Y]+E^{2}[X \mid Y],
\end{aligned}
$$

where we have used the fact that $E[X \mid Y]$ and $E^{2}[X \mid Y]$ are functions of Y and thus, given Y, they may be treated as constants. Therefore,

$$
\operatorname{Var}(X \mid Y)=E\left[X^{2} \mid Y\right]-E^{2}[X \mid Y]
$$

and taking expectations yields

$$
\begin{aligned}
E[\operatorname{Var}(X \mid Y)] & =E\left[E\left[X^{2} \mid Y\right]\right]-E\left[E^{2}[X \mid Y]\right] \quad(*) \\
& =E\left[X^{2}\right]-E\left[E^{2}[X \mid Y]\right]
\end{aligned}
$$

Also,

$$
\begin{aligned}
\operatorname{Var}(X \mid Y) & =E\left[(E[X \mid Y]-E[E[X \mid Y]])^{2}\right] \\
& =E\left[(E[X \mid Y]-E[X])^{2}\right] \\
& =E\left[E^{2}[X \mid Y]-2 E[X] E[X \mid Y]\right]+E^{2}[X] \\
& \left.=E\left[E^{2}[X \mid Y]\right]-2 E[X] E[E[X \mid Y]]\right]+E^{2}[X] \\
& =E\left[E^{2}[X \mid Y]\right]-2 E^{2}[X]+E^{2}[X] \\
& =E\left[E^{2}[X \mid Y]\right]-E^{2}[x]
\end{aligned}
$$

Hence, from equation $\left(^{*}\right)$ and the above equation, we arrive at:

$$
E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y])=E\left[X^{2}\right]-E^{2}[X]
$$

Exercise 3.49

Assume that independently of the past, each fish caught is tossed back with probabiity $\left.2 / 3 . e^{(}-10\right)(10)^{n} / n$!

Mean and variance of the number of fish caught both equal 30.

Mean and variance of the number he takes home both equal 10.

Exercise 3.50

$$
\begin{aligned}
P(N=n)= & \frac{1}{3}\left[\binom{10}{n}(.3)^{n}(.7)^{10-n}+\binom{10}{n}(.5)^{n}(.5)^{10-n}\right. \\
& \left.+\binom{10}{n}(.7)^{n}(.3)^{10-n}\right]
\end{aligned}
$$

N is not binomial.

$$
E[N]=3\left(\frac{1}{3}\right)+5\left(\frac{1}{3}\right)+7\left(\frac{1}{3}\right)=5
$$

Exercise 3.55

Let us define the following r.v.'s:

$$
X_{k}= \begin{cases}1 & \text { if head } \\ 0 & \text { if tail }\end{cases}
$$

for $k=1, \ldots, n$, and

$$
S_{n}=\sum_{k=1}^{n} X_{k},
$$

that is, the number of heads in n coin tosses. Let us also define

$$
S_{n}^{j}=\sum_{\substack{k=1 \\ k \neq j}}^{n} X_{k},
$$

i.e., the number of heads in n coin tosses excluding the j th toss. Then,

$$
\begin{aligned}
P\left\{S_{n}=\text { even }\right\}= & P\left\{X_{j}=1 \mid S_{n}^{j}=\text { odd }\right\} P\left\{S_{n}^{j}=\text { odd }\right\} \\
& +P\left\{X_{j}=0 \mid S_{n}^{j}=\operatorname{even}\right\} P\left\{S_{n}^{j}=\text { even }\right\} \\
= & P\left\{X_{j}=1\right\} P\left\{S_{n}^{j}=\text { odd }\right\} \\
& +P\left\{X_{j}=0\right\} P\left\{S_{n}^{j}=\text { even }\right\} \text { from independence } \\
= & \frac{1}{2}\left(1-P\left\{S_{n}^{j}=\text { even }\right\}\right)+\frac{1}{2} P\left\{S_{n}^{j}=\text { even }\right\} \\
= & \frac{1}{2}
\end{aligned}
$$

Note that this is not true if $P\left\{X_{j}=1\right\}=P\left\{X_{j}=0\right\}=1 / 2$ does not hold.

