MAT 132A Homework assignment \#3

Exercises 4.2 and 4.3

	(RRR)	(RRD)	(RDR)	(RDD)	(DRR)	(DRD)	(DDR)	(DDD)
(RRR)	. 8	. 2	0	0	0	0	0	0
(RRD)			. 4	. 6				
(RDR)					. 6	. 4		
(RDD)							. 4	. 6
(DRR)	. 6	. 4						
(DRD)			. 4	. 6				
(DDR)					. 6	. 4		
(DDD)							. 2	. 8

Exercise 4.5

No.

Exercise 4.6

It is immediate for $n=1$, so assume for n. Now:

$$
\begin{aligned}
P_{11}^{n+1} & =P_{11} P_{11}^{n}+P_{12} P_{12}^{n} \\
& =P\left[\frac{1}{2}+\frac{1}{2}(2 p-1)^{n}\right]+(1-p)\left[\frac{1}{2}-\frac{1}{2}(2 p-1)^{n}\right] \\
& =\frac{1}{2}+\frac{1}{2}(2 p-1)^{n}[p-(1-p)] \\
& =\frac{1}{2}+\frac{1}{2}(2 p-1)^{n+1}
\end{aligned}
$$

The verification that P_{22}^{n+1} is the same as above is identical, and the other $n+1$ step transition probabilities are determined since the row sums must be equal 1 .

Exercise 4.7

$$
\begin{aligned}
P_{30}^{2}+P_{31}^{2} & =P_{31} P_{10}+P_{33} P_{11}+P_{33} P_{31} \\
& =(.2)(.5)+(.8)(0)+(.2)(0)+(.8)(.2) \\
& =.26
\end{aligned}
$$

Exercise 4.8

Let the state on any day be the number of the coin that is flipped on that day.

$$
P=\left(\begin{array}{ll}
.7 & .3 \\
.6 & .4
\end{array}\right)
$$

and so,

$$
P^{2}=\left(\begin{array}{ll}
.67 & .33 \\
.66 & .34
\end{array}\right)
$$

and

$$
P^{3}=\left(\begin{array}{ll}
.667 & .333 \\
.666 & .334
\end{array}\right)
$$

hence

$$
\frac{1}{2}\left(P_{11}^{3}+P_{21}^{3}\right)=0.6665
$$

