MAT 132A Homework assignment #3

Exercises 4.2 and 4.3

	(RRR)	(RRD)	(RDR)	(RDD)	(DRR)	(DRD)	(DDR)	(DDD)
(RRR)	.8	.2	0	0	0	0	0	0
(RRD)			.4	.6				
(RDR)					.6	.4		
(RDD)							.4	.6
(DRR)	.6	.4						
(DRD)			.4	.6				
(DDR)					.6	.4		
(DDD)							.2	.8

Exercise 4.5

No.

Exercise 4.6

It is immediate for n = 1, so assume for n. Now:

$$P_{11}^{n+1} = P_{11}P_{11}^{n} + P_{12}P_{12}^{n}$$

= $P\left[\frac{1}{2} + \frac{1}{2}(2p-1)^{n}\right] + (1-p)\left[\frac{1}{2} - \frac{1}{2}(2p-1)^{n}\right]$
= $\frac{1}{2} + \frac{1}{2}(2p-1)^{n}[p-(1-p)]$
= $\frac{1}{2} + \frac{1}{2}(2p-1)^{n+1}$

The verification that P_{22}^{n+1} is the same as above is identical, and the other n+1 step transition probabilities are determined since the row sums must be equal 1.

Exercise 4.7

$$P_{30}^{2} + P_{31}^{2} = P_{31} P_{10} + P_{33} P_{11} + P_{33} P_{31}$$

= (.2)(.5) + (.8)(0) + (.2)(0) + (.8)(.2)
= .26

Exercise 4.8

Let the state on any day be the number of the coin that is flipped on that day.

$$P = \left(\begin{array}{cc} .7 & .3\\ .6 & .4 \end{array}\right)$$

and so,

$$P^2 = \left(\begin{array}{cc} .67 & .33\\ .66 & .34 \end{array}\right)$$

and

$$P^3 = \left(\begin{array}{cc} .667 & .333\\ .666 & .334 \end{array}\right)$$

hence

$$\frac{1}{2}(P_{11}^3 + P_{21}^3) = 0.6665$$