MAT 132A Homework assignment \#4

## Exercise 4.10

(i) $\{0,1,2\}$ recurrent.
(ii) $\{0,1,2,3\}$ recurrent.
(iii) $\{0,2\}$ recurrent, $\{1\}$ transient, $\{3,4\}$ recurrent.
(iv) $\{0,1\}$ recurrent, $\{2\}$ recurrent, $\{3\}$ transient, $\{4\}$ transient.

## Exercise 4.13

$\sum_{i=1}^{n} Y_{j} / n \rightarrow E[Y]$ by the Strong Law of large numbers. Now $E[Y]=2 p-1$. Hence, if $p>1 / 2$ then $E[Y]>0$, and so the average of the $Y_{j}^{\prime} s$ converges in this case to a positive number which implies that $\sum_{1}^{n} Y_{j} \rightarrow \infty$ as $n \rightarrow \infty$. Hence, state 0 can be visited only a finite number of times and so must be transient. Similarly, if $p<1 / 2$, then $E[Y]<0$, and so $\lim _{n \rightarrow \infty} \sum_{1}^{n} Y_{j}=$ $-\infty$, and the argument is similar.

## Exercise 4.16

If $\sum_{i=0}^{m} P_{i j}=1$ for all $j$, then $\pi_{j}=1 /(M+1)$ satisfies

$$
\pi_{j}=\sum_{i=0}^{m} \pi_{i} P_{i j}, \quad \sum_{j=0}^{m} \pi_{j}=1
$$

## Exercise 4.18

Let $X_{n}$ denote the value of $Y_{n} \bmod 13$. That is, $X_{n}$ is the remainder when $Y_{n}$ is divided by 13 . Now $X_{n}$ is a Markov chain
with states $0,1, \ldots 12$. It is easy to verify that $\sum_{i} P+i j=1$ for all $j$. (for instance, for $j=3$ :

$$
\begin{aligned}
\sum_{i} P_{i j} & =P_{2,3}+P_{1,3}+P_{0,3}+P_{12,3}+P_{11,3}+P_{10,3} \\
& \left.=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1\right) .
\end{aligned}
$$

Hence from Exercise 15, $\pi_{i}=\frac{1}{14}$.

## Exercise 4.21

Letting $X_{n}$ denote the number of pairs of shoes at the door the runner departs from at the beginning of day $n$, then $\left\{X_{n}\right\}$ is a Markov chain with transition probabilities

$$
\begin{array}{ll}
P_{i, j}=\frac{1}{4} & \begin{array}{l}
\text { This is the situation in which the runner } \\
\text { returns to the same door and then chooses } \\
\text { that door the next day, }
\end{array} \\
P_{i, k-j}=\frac{1}{4} & \begin{array}{l}
\text { returns to the same door and then choses } \\
\text { the other door }
\end{array} \\
P_{i, k-j}=\frac{1}{4} & \begin{array}{l}
\text { returns to the opposite door and chooses } \\
\text { that door next }
\end{array} \\
P_{0, k}=\frac{1}{4} & \begin{array}{l}
\text { same as above }
\end{array} \\
P_{i, j-1}=\frac{1}{4}, j>0 & \begin{array}{l}
\text { returns to opposite door but selects orig- } \\
\text { inal door next }
\end{array} \\
P_{0,0}=\frac{1}{4} & \begin{array}{l}
\text { same as above }
\end{array}
\end{array}
$$

Now, for $j \neq k$

$$
\sum_{i} P_{i j}=P_{j j}+P_{k-j, j}+P_{k-j+1, j}+P_{j+1, j}=1
$$

Since a similar result is true for $j=k$, we see that this Markov chain is doubly stochastic; that is, all of the column sums equal 1 , and thus the limiting probabilities are equal. Hence, the proportion of days he runs barefooted is $1 /(k+1)$.

## Exercise 4.25

Each employee moves according to a Markov chain whose limiting probabilities are the solutions of

$$
\begin{aligned}
& \Pi_{1}=.7 \Pi_{1}+.2 \Pi_{2}+.1 \Pi_{3} \\
& \Pi_{2}=.2 \Pi_{1}+.6 \Pi_{2}+.4 \Pi_{3} \\
& \Pi_{3}=1-\Pi_{1}-\Pi_{2}
\end{aligned}
$$

Solving yields $\Pi_{1}=6 / 17, P i_{2}=7 / 17, P i_{3}=4 / 17$. Hence, if $N$ is large, it follows from the law of large numbers that approximately 6,7 , and 4 of each 17 employees are in categories 1,2 , and 3 .

## Exercise 4.29

Consider the Markov chain whose state at time $n$ is the type of exam number $n$. The transition probabilities of this Markov chain are obtained by conditioning on the performance of the class. This gives the following.

$$
\begin{array}{lll}
P_{11}=.3(1 / 3)+.7(1)=.8 & P_{12}=P_{13}=.3(1 / 3)=.1 \\
P_{21}=.6(1 / 3)+.4(1)=.6 & P_{22}=P_{23}=.6(1 / 3)=.2 \\
P_{31}=.9(1 / 3)+.1(1)=.4 & P_{32}=P_{33}=.9(1 / 3)=.3
\end{array}
$$

Let $r_{i}$ denote the proportion of examrs that are type $i, i=1,2,3$. The $r_{i}$ are the solutions of the following set of linear equations:

$$
\begin{aligned}
& r_{1}=.8 r_{1}+.6 r_{2}+.4 r_{3} \\
& r_{2}=.1 r_{1}+.2 r_{2}+.3 r_{3} \\
& r_{3}=1-r_{1}-r_{2}
\end{aligned}
$$

Since $P_{i 2}=P_{i 3}$ for all states $i$ it follows that $r_{2}=r_{3}$. Solving the equations gives the solution

$$
r_{1}=5 / 7, r_{2}=r_{3}=1 / 7
$$

## Exercise 4.31

The equations are

$$
\begin{aligned}
& r_{0}=r_{1}+1 / 2 r_{2}+1 / 3 r_{3}+1 / 4 r_{4} \\
& r_{1}=1 / 2 r_{2}+1 / 3 r_{3}+1 / 4 r_{4} \\
& r_{2}=1 / 3 r_{3}+1 / 4 r_{4} \\
& r_{3}=1 / 4 r_{4} \\
& r_{4}=r_{0} \\
& r_{0}=1-r_{1}-r_{2}-r_{3}-r_{4}
\end{aligned}
$$

The solutions is

$$
r_{0}=r_{4}=12 / 37, r_{1}=6 / 37, r_{2}=4 / 37, r_{3}=3 / 37
$$

