MAT 132A Homework assignment #5



Exercise 4.36

(a) 1, since all states communicate and thus all are recurrent
since state space is finite.

(b) Condition on the first state visited from 2.
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; N71j

I L p.+ P

N &N A

I
2|u.
e

<
Il
o

and it follows by hypothesis.

Exercise 4.37

(i) Let the state be the number of umbrellas he has at his
present location. The transition probabilities are:
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(i) We must show that II;, = ., P; is satisfied by the given
solution. These equations reduce to:
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and it is easily verified that they are satisfied.
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Exercise 4.40

(i) No.

lim P{X, =i} = p7'(i) + (1 — p)72(3)



(ii) Yes.

Exercise 4.44
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P{offspring is a aa — both parents dominant}
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Exercise 4.45

This is just the probability that a gambler starting with m
reaches her goal of n + m before going brke, and is thus equal

to
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where ¢ =1 — p.

Exercise 4.46

Let A be the event that all states have been visited by time
T. Then, comditioning on the direction of the first step gives

P(A)

P(A — clockwise)p + P(A — counterclockwise)q
1—q/p 1-p/q
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The conditional probabilities in the preceding follow by noting
that they are equal to the probability in the gambler’s ruin prob-
lem that a gambler that starts with 1 wil reach n before going
broke when the gambler’s win probabilities are p and q.

Exercise 4.47

Using the hint, we see that the desired probability is:

P{lim X,, = N|X,, =i} )

and the result follows from Equation (5.1).

Exercise 4.50

(a) and (b) With Py =0,Py =1
Pi:aiPi+1+(1_ai)Pi—l7 ZzlaaN_l

These latter equations can be rewritten as

Py — P, =0{(P,— P—1)

where 3; = (1 — o;)/a;. These equations can now be solved
exactly as in the original gambler’s ruin problem. They give the
solution:
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where



(c) Py_;, where a; = (N —1)/N.



