MAT 132A Homework assignment \#5

Exercise 4.36

(a) 1, since all states communicate and thus all are recurrent since state space is finite.
(b) Condition on the first state visited from i.

$$
\begin{gathered}
x_{j}=\sum_{j=1}^{N-1} P_{i j} x_{j}+P_{i N}, \quad i=1, \ldots, N-1 \\
X_{0}=0, x_{N}=1
\end{gathered}
$$

(c) Must show:

$$
\begin{aligned}
\frac{i}{N} & =\sum_{j=1}^{N-1} \frac{j}{N} P_{i j}+P_{i N} \\
& =\sum_{j=0}^{N} \frac{j}{N} P_{i j}
\end{aligned}
$$

and it follows by hypothesis.

Exercise 4.37

(i) Let the state be the number of umbrellas he has at his present location. The transition probabilities are:

$$
P_{0, r}=1, P_{i, r-i}=1-p, P_{i, r-i+1}=p, i=1, \ldots, r
$$

(ii) We must show that $\Pi_{j}=\sum_{i} r_{i} P_{i j}$ is satisfied by the given solution. These equations reduce to:

$$
\begin{aligned}
\tau_{r} & =\tau_{0}+\tau_{1} p \\
\tau_{j} & =\tau_{r-j}(1-p)+\tau_{r-j+1} p, j=1, \ldots, r-1 \\
\tau_{0} & =\tau_{r}(1-p)
\end{aligned}
$$

and it is easily verified that they are satisfied.
(iii)

$$
p r_{0}=\frac{p q}{r+q}
$$

(iv)

$$
\begin{aligned}
& \frac{d}{d p}\left(\frac{p(1-p)}{4-p}\right)=\frac{(4-p)(1-2 p)+p(1-p)}{(4-p)^{2}} \\
&=\frac{p^{2}-8 p+4}{(4-p)^{2}} \\
& p^{2}-8 p+4=0 \Rightarrow p=\frac{8-\sqrt{48}}{2} \approx .55
\end{aligned}
$$

Exercise 4.40
(i) No.

$$
\lim P\left\{X_{n}=i\right\}=p \tau^{1}(i)+(1-p) \tau^{2}(i)
$$

(ii) Yes.

$$
P_{i j}=p P_{i j}^{(1)}+(1-p) P_{i j}^{(2)}
$$

Exercise 4.44

$$
\begin{aligned}
S_{11} & =P\{\text { offspring is a aa }- \text { both parents dominant }\} \\
& =\frac{r^{2} \frac{1}{4}}{(1-q)^{2}}=\frac{r^{2}}{4(1-q)^{2}} \\
S_{10} & =\frac{P\{\mathrm{aa}, 1 \text { dominant and } 1 \text { recessive parent }\}}{P\{1 \text { dominant and } 1 \text { recessive parent }\}} \\
& =\frac{P\{\text { aa, } 1 \text { dominant and } 1 \text { recessive parent }\}}{2 q(1-q)} \\
& =\frac{2 q r \frac{1}{2}}{2 q(1-q)} \\
& =\frac{r}{2(1-q)}
\end{aligned}
$$

Exercise 4.45

This is just the probability that a gambler starting with m reaches her goal of $n+m$ before going brke, and is thus equal to $\frac{1-(q / p)^{m}}{1-(q / p)^{n+m}}$, where $q=1-p$.

Exercise 4.46

Let A be the event that all states have been visited by time T. Then, comditioning on the direction of the first step gives

$$
\begin{aligned}
P(A) & =P(A-\text { clockwise }) p+P(A-\text { counterclockwise }) q \\
& =p \frac{1-q / p}{1-(q / p)^{n}}+q \frac{1-p / q}{1-(p / q)^{n}}
\end{aligned}
$$

The conditional probabilities in the preceding follow by noting that they are equal to the probability in the gambler's ruin problem that a gambler that starts with 1 wil reach n before going broke when the gambler's win probabilities are p and q.

Exercise 4.47

Using the hint, we see that the desired probability is:
$\frac{P\left\{X_{n+1}=i+1 \mid X_{n}=i\right\} P\left\{\lim X_{n}=N \mid X_{n}=i, X_{n+1}=i+1\right\}}{P\left\{\lim X_{n}=N \mid X_{n}=i\right\}}=\frac{p^{P_{i}}+1}{P_{i}}$
and the result follows from Equation (5.1).

Exercise 4.50

(a) and (b) With $P_{0}=0, P_{N}=1$

$$
P_{i}=\alpha_{i} P_{i+1}+\left(1-\alpha_{i}\right) P_{i-1}, \quad i=1, \ldots, N-1
$$

These latter equations can be rewritten as

$$
P_{i+1}-P_{i}=\beta_{i}\left(P_{i}-P_{i-1}\right)
$$

where $\beta_{i}=\left(1-\alpha_{i}\right) / \alpha_{i}$. These equations can now be solved exactly as in the original gambler's ruin problem. They give the solution:

$$
P_{i}=\frac{1+\sum_{j=1}^{i-1} C_{j}}{1+\sum_{j=1}^{N-1} C_{j}}, \quad i=1, \ldots, N-1
$$

where

$$
C_{j}=\prod_{i=1}^{j} \beta_{i}
$$

(c) $\quad P_{N-i}$, where $\alpha_{i}=(N-i) / N$.

