MAT 132A Homework assignment \#6

Exercise 4.54

$$
\begin{aligned}
& \pi \geq 0=P\left(X_{0}=0\right) \text {. Assume that } \pi \geq P\left(X_{n-1}=0\right) . \\
& P\left(X_{n}=0\right)=\sum_{j} P\left(X_{n}=0 \mid X_{1}=1\right) P_{j} \\
& =\sum_{j}\left[P\left(X_{n-1}=\right)\right]^{j} P_{j} \\
& \leq \sum_{j} \pi^{j} P_{j} \\
& =\pi
\end{aligned}
$$

Exercise 4.55

(a) $\quad \pi_{0}=\frac{1}{3}$
(b) $\pi_{0}=1$
(c) $\quad \pi_{0}=(\sqrt{3}-1) / 2$

Exercise 4.56

(a) Yes, the next state depends only on the present one and not on the past.
(b) One calss period is 1 , recurrent.
(c)

$$
\begin{aligned}
P_{i, i+1} & =P \frac{N-i}{N}, \quad i=0,1, \ldots, N-1 \\
P_{i, i-1} & =(1-P) \frac{i}{N}, \quad i=1,2, \ldots, N \\
P_{i, i} & =P \frac{i}{N}+(1-P) \frac{N-i}{N}, \quad i=0,1, \ldots, N
\end{aligned}
$$

(d) See (e)
(e) $\quad \pi_{i}=\binom{N}{i} p^{i}(1-p)^{N-i}, \quad i=0,1, \ldots, N$
(f) Direct substitution or use Example 7a.
(g) Time $=\sum_{j=i}^{N-1} T_{j}$, where T_{j} is the number of flips to go from j to $j+1$ heads. T_{j} is geometric with $E\left(T_{j}\right)=N / j$. Thus, $\mathrm{E}($ Time $)=\sum_{j=i}^{N-1} N / j$.

Exercise 4.59

(a)

$$
P_{i, i+1}=\frac{(m-i)^{2}}{m^{2}}, \quad P_{i, i-1}=\frac{i^{2}}{m^{2}}, \quad P_{i, i}=\frac{2 i(m-i)}{m^{2}}
$$

(b) Since, in the limit, the set of m balls in urn 1 is equally likely to be any subset of m balls, it is intuitively clear that

$$
\pi_{i}=\frac{\binom{m}{i}\binom{m}{m-i}}{\binom{2 m}{m}}=\frac{\binom{m}{i}^{2}}{\binom{2 m}{m}}
$$

(c) We must verify that, with the π_{i} given in (b),

$$
\pi_{i} P_{i, i+1}=\pi_{i+1} P_{i+1, i}
$$

That is we must verify that

$$
(m-i)\binom{m}{i}=(i+1)\binom{m}{i+1}
$$

which is immediate.

Exercise 4.60

If $\pi=c \frac{P_{i j}}{P_{j i}}$ then

$$
\begin{aligned}
& \pi_{j} P_{j k}=c \frac{P_{i j} P_{j k}}{P_{j i}} \\
& \pi_{k} P_{k j}=c \frac{P_{i k} P_{k j}}{P_{k i}}
\end{aligned}
$$

and are thus equal by hypothesis.

Exercise 4.63

(a) The state would be the present ordering of the n processors. Thus, there are n ! states.
(b) Consider states $x=\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ and $x^{\prime}=$ $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{i}, \ldots, x_{n}\right)$. With q_{t} equal to $1-p_{t}$ the time reversible equations are

$$
\pi(x) q_{x_{i}} p_{x_{i+1}} \prod_{k=1}^{i-1} q_{x_{k}}=\pi\left(x^{\prime}\right) q_{x_{i+1}} p_{x_{i}} \prod_{k=1}^{i-1} q_{x_{k}}
$$

or

$$
\pi(x)=\left(q_{x_{i+1}} / p_{x_{i+1}}\right)\left(q_{x_{i}} / p_{x_{i}}\right)^{-1} \pi\left(x^{\prime}\right)
$$

Suppose now that we successively utilize the above identity until we reach the state $(1,2, \ldots, n)$. Note that each time j is moved to the left we multiply by q_{j} / p_{j} and each time it moves to the right we multiply by $\left(q_{j} / p_{j}\right)^{-1}$. Since x_{j}, which is initially in position j, is to have a net move of $j-x_{j}$ positions to the left (so it will end up in position $\left.j-\left(j-x_{j}\right)=x_{j}\right)$ it follows from the above that

$$
\pi(x)=C \prod_{j}\left(q_{x_{j}} / p_{x_{j}}\right)^{j-x_{j}}
$$

The value of C, which is equal to $\pi(1,2, \ldots, n)$, can be obtained by summing over all states x and equating to 1 . Since the solution given by the above value of $\pi(x)$ satisfies the time reversibility equations, it follows that the chain is time reversible and these are the limiting probabilities.

Exercise 4.64

The number of transitions from i to j on any interval must be equal (to within 1) the number from j to i since each time the process goes from i to j in order to get back to i, it must enter from j.

