Problem 1 (20 pts)
(a) (5 pts) Define ainitary matrix and arorthogonalmatrix and describe their difference.

Answer: The difference is that the unitarity is for complex-valued matrices and the orthogonality
is for real-valued matrices. They are defined as follows.

* Let Ae C"™*™, ThenA is a unitary matrix ifA*A = AA™ = I,,«m. Alternatively, you
can say that the columns dfconstitute an orthonormal basis fof".

« Let AcR™ ™, ThenA is an orthogonal matrix iA” A = AAT = I,,..». Alternatively,
you can say that the columns afconstitute an orthonormal basis ff:.

(b) (7 pts) LetA be a matrix of sizen x n. Let P be any unitary matrix of size: x m. Prove that
I All2 = [IPAll2.

Answer: Consider any € C". Then

IPAx|3 = (PAx, PAx)
= (PAx)*(PAx)
= x"A"P*"PAx
= x*A"Ax sinceP is unitary;
= (Ax, Ax)

2
= I Axll3.

Hence,

| PAl2 = max [|[PAx[lz = max [|Axl|2 = [ All2.
lxll2=1 lxl2=1

(c) (8 pts) LetA be a matrix of sizen x n. Let Q be any unitary matrix of sizea x n. Prove that
I All2 = 1 AQIl2.

Answer: Consider any € C". Then lety = Qx € C". SinceQ is unitary, |yll2 = 1Qxll2 = l|x]l2
with the same argument in Part (a). Now, we have

|AQl2 = max [|AQx|> = max [[Ayll2 = [ All2.
lxll2=1 lyll2=1



Problem 2 (20 pts) Consider the following matrix.

[ R R O
oM O =
o OO -

wheree = 1072. Using the 2-digit floating-point arithmetic, compute the reduced QR factor-
ization of A using themodifiedGram-Schmidt procedure. Note that reduced QR factoriza-
tion means tha is of size4 x3 andR is of size3x3. You can also use the following approxi-
mation: f1(v2) = 1.4, fI1(1/v/2) =0.71, f1(v/1.5) = 1.2, f1(1/v/1.5) = 0.82, f1(0.71%) = 0.50,
f1(1/0.71) =1.4, f1(1/1.2) =0.83.

Answer: Let us proceed step by step. Let, j =1,2,3 be the column vectors of.

Step 1: Normalizea, to getq,, i.e.,

m =llaillz=fl(V1+€?) =1.

1
0.010

0o |

0

q,=ailrmn =

S oM =

Step 2: Remove theg, component fromae, andas immediately. Thus, we have:

1 1 1 0
r2={(q,a)=[1 ¢ 0 0] 2 =1. ay=a,—r;q,= (e) - (6) = _: .
0 0 0 0
1 1] [1] [ o
ris={(qy,as)=[1 ¢ 0 0] 8 =1. as=asz—r;zq,= 3 - S = _0'(?10 .
€ € 0] | 0.010

Step 3: Normalizea, to getq,. Then immediately subtract thg, component frons.

o] [ o
=@l = fle VD =0014. gy =alran = f1070.010)- | | = | 027
U I
0
rs=(qyas)=[0 —0.71 0.71 0] _0'(?10 — 0.0071.
0.010



0 0 0
o ~ ~0.010 —0 71| fl=1+071%| _ ~0.50
G — G3—T23G, = f1 o |—00071- | 71 =0.010- 1 72y | =0.010 | ot
0.010 1 1

Step 4: Normalizeas to getqs,.

r33 = [lasll2 = £1(0.010- v 0.52 + 0.52+ 1) =0.010- fI(v'1.5) = 0.012.

—O 50 -0.42

~ 0 50 —0 42
qs; = a3/r33 = fl 0.010/0.012-
0.83

Step 5: Finally, we can form the reduced QR factorization as

1 0 U )
~~ l0.010 —071 -0.42
_ogr= %010 071 -0 0 0.014 0.0071].
0 071 —0d2| | "
0 0 083 '




Problem 3 (20 pts) LetP = [(1) _01 .

(a) (5 pts) Showp is a projector, but not an orthogonal projector.

Answer: First of all, P is a square matrix. Now we need to shd#w= P. But this is easy:

Pl ollo o)=lo o)=*

Therefore P is a projector. However is not an orthogonal projector because it is clear that
PT # Pinthis case.

(b) (5 pts) Show thaR? = R(P) @ N(P). Moreover, show thaR(P) is not orthogonal to\N(P).
[Hint: Obtain the spanning sets &f(P) andN(P).]

Answer: Letx=

;1] be any vector ifR2. Then,
2

1 -1
0 O

X1 _
X2

X1 — X2

0 = (X1 — x2)

1
ol (-
Now take anyx € N(P). Then fromPx = 0, we immediately see that = x,. In other words,

N(P) :span{ } }

Px=|

1
0 )

wherex, x, are arbitrary. Therefore, cleart®(P) = span{

. 1 1 : .
Slnce[ol and H are linearly independent, but not mutually orthogonal, we clearly have:

R%? = R(P) e N(P),

butR(P) andN(P) are not orthogonal.



(c) (5 pts) Show thaR? = R(PT) & N(P). Note that you need to show th&tP”) is orthogonal to
N(P). [Hint: Obtain the spanning sets &(P7) andN(P).]

Answer: We do similarly with Part (b). Lex =

);1] be any vector irR?.
2

!

_11] } From Part (b), we already know that(P) = Span{

X1
X2

X1

1 0
PTx:[ =X

-1 0

So,R(PT) = span{

ﬂ} Be-

1 1 : :
cause[_ll and 1} are linearly independent, and mutually orthogonal, we clearly have:

W:R@ﬁéN@y

(d) (5 pts) Show thaR? = R(P) é N(PT). Note that you need to show th&tP) is orthogonal to
N(PT). [Hint: Obtain the spanning sets &f(P) andN(P7).]

Answer: We still need to computd(PT). For anyx € N(PT), we haveP” x = x;

1
_1] =0. Thus,

we must havex; = 0. But x, is arbitrary. SoN(PT) = span{ (1)

}. We already know

thatR(P) = span{

(1)” from Part (b). Becaus{%] and m are linearly independent, and
mutually orthogonal, we clearly have:

R? = R(P) & N(PT).



Problem 4 (20 pts) Consider the following matrix:

(a) (10 pts) Compute thiull SVD of A.

Answer: If A=UzVT, thenA"A=Vvz"U"Uzv’ = vTzv’. From this, we havel” AV =
VE'Z, or ATAv; = o%v;, j=1,2in this case. So, we need to solve the eigenvalue problem

for AT A.
-1 0
r._[-1 10 Sl of2 1
e P I R ]
1
Hence,
T 2-1 -1 2 2 a2
det(a”A-An =det| "7 7 1] = 2= (-D* = A*~4143 = (A-3)A-D = 0= A =3,1.

Since all the singular values must be nonnegative, we bavey'3 ando, = 1. Now let us

computev; = [x]
1 y .

T, _ -1 -1f|x| ([(-x-y|_ |0 _
(A" A 3I)v1_0<:>[_1 Sy = —x—y = o = y=-X.
1 e
In other wordsy; = x _1 . But we must havébv; ||, = 1. So,vlzﬁ e
Now, let us compute, = ;C/ .
T, _ 1 —-1f|x| _(x=-y|_|O _
(A"A I)v1—0<:>[_1 1 |y T l=x+y T |o = y=x

In other words, we have, = % m

FromA=UzVT, we haveAV = UZ. In other wordsAv; = o ju;, j=1,2. So,

-1 0 1 1 -1
V3up=A=|1 -1 _\/i —u=—/|2
0o 1|17z Ve |1




w=A=

-1 0 [L 1 -1

1 -1 \{5] =—1o].

o 1]l vz,

We still need to findug that is orthogonal to both; andu, and that has a unit length. Let
X

Y-
Z

us =

1 1
uj,u3) = %(—x+2y—z) =0; (up,ug)= %(—x+z) =0, <=x=y=z.

1
Thus, we havais = % 1. Finally, we have the following full SVD ofi:
1
1 1 1
V6 Vi VA|[V3 0L _
@ 1 \{§ 0O 0 % % '
V6 V2 3




(b) (5 pts) Compute the rank 1 approximatigan of A.

Answer: By definition of the rank 1 approximation of, we have

D=

N |

Pr—

o |

— Y

_ -
DN

I—
Il

1
A] :Ululv{ = \/5%

! 1 3 3
1] V2 — 1 ‘
2

(c) (5 pts) Compute the error of the rank 1 approximation using the Frobenius norm, i.e.,
A= A1lF.

D=

Answer: We know that for a general of sizem x n

IA=Aillp=1/05+---0%.

But in our particularA, n =2. So,

IA-Alllp=\/o%=1.
R
1 -1f-|1 -
0 1 -1 1

S RO

Alternative Solution:

A-A, =

—
—_—
Il
—

|
D=
| ONI»—‘
|
\S]
1= ONI»—
—_—

Hence,




Problem 5 (20 pts) Consider the following documents consisting of titles of some actual mathe-
matical papers.

D1: Neural network and regression spline value function approximations for stochastic dy-
namic programming

D2: Hardy inequalities and dynamic instability of singular Yamabe metrics

D3: Boundedness of weak solutions of nondiagonal singular parabolic system equations

D4: On one nonlinear analogue of the mean value property and its application to the inves-
tigation of the nonlinear Goursat problem

D5: Atomic decompositions of weak Hardy spacesBe¥alued martingales
D6: §-sequence approach to a two-point boundary value problem using Daubechies wavelets
D7: Decomposition strategies for large-scale continuous location-allocation problems

Now, let us consider the following terms:

T1: decomposition, decompositions
T2: singular
T3: value, values, valued

(&) (5 pts) Construct th@erm-by-Document Matrikom the terms and documents above. Note
that the terms areot case sensitive.

Answer: We just need to count the occurrences of each term in each document. Thus, we have

D1 D2 D3 D4 D5 D6 D7
T1T/,0 O O O 1 0 1
20 1 1 O O O O
731 0 0 1 1 1 O




(b) (5pts) Letg=(1,1,1)T be your query vector. Computest;, j =1,...,7 whered; is an angle
betweeng andd, i.e., thejth column vector of the term-by-document matrix you obtained
in Part (a). Then, find the best matching document to your query.

Answer: We can computeosf; as

__{ad))

= , i=1,...,7,
lalidl, 7

J

whered ; is the jth column vector of the term-by-document matfixcomputed in Part (a).
Now, ligl. = v3 andlld;l, is1,1,1,1,v2,1,1 for j =1,...,7. Hence

yvo (At tto2 11
(c0s01)jr= (\/5 AV fs)

Therefore, the best match to this quenpss.

10



(c) (10 pts) Describe why SVD is helpful for searching documents containing a given set of terms
for a large term-by-document matrix. (Note: No need to compute the SVD of the term-by-
document matrix of Part (a).)

Answer: There are at least two advantages to use SVD, in particular, the low rank approximation
of a large term-by-document matri

(1) A contains a lot of noise (variation and ambiguity in the use of vocabulary, etc.). Thus, the low
rank approximation via SVD can filter out such noise.

(2) The computation of the match vims0; can be faster thanks to the low rank approximation.
In fact, letA, = X% ajujv]T be the rankc approximation ofA wherel < k = rank(A). Let

: j=1
us write
01 V{

Ak:UkaVkT:[lll llk] :
O V]Z

Then, the better (and computationally faster) version of the measure of match is:

(4, Are;)

Coshj = ——————.
T lqllz Axejll

This version is faster than the original version because

1UZcV ejll2

= | UxSkejll by settingS; =2 V,|;

= |Ugsjll2 sjisthejth column ofSy;

= |sjllz sinceUyx’s columns are orthonormal

lArejll2

and consequently we have
yURS
0s¢j:—<q £ ]>.
lqll2lis;l2
Now, we only needlU;, i, Vi separately without explicitly formingi; = Uz V!, and
moreover,s;'s do not depend on a query vectgrso that they can be precomputed for a
given A.

11



Problem 6 (20 pts) LetA e C™*" and its SVD beA = UXV*. Let us assume thaink(A) = r. Let
us now define thpseudoinversef A as:

o 0 0
_ 1.
AT — VZTU*, z"' — Drir OTX(WI—F‘) ’ D—l — 0 T2 ' ' ,
Om-nxr  Om-rxm-r) T . 0
1
0 0 a5
whereO;.,, denotesk x £ matrix whose entries are all zeros.
(@) (10 pts) Suppose = n < m. Then show thant" = (A* A)~1 A*.
Answer: Because = n < m, theX part of the SVD ofA is of the form
'0-1 0 1
s=|0 O] epmen,
O(m—n)xn
Therefore,
0% 0
A*A=VZ'U'UZV* =VZ'ZV* =V | : |V,
Thus,
1
P 0
AAt=v|: . |V
0

12



Finally, we have

(A*A)~1A*

r 1
o
v|:
0
r 1
o
4E
0
1
o1
vl
0
vetu*
Al

13

V*VI*U*

01

Opn



(b) (10 pts) ProveAA' is an orthogonal projector onf®(A). Hint: You can use that' satisfies
the following Moore-Penroseondition:

AATA=A ATAAT = At
(AANY* = AAT AT A)* = AT A.

Answer: To showAAT is an orthogonal projector on®(A), we need to show the following four
items.

(1) AA'is a square matrix of sizex x m:
This is obvious becausée C™*" and AT e C"*™ from its definition.

(2) (AAT)? = AAT:
This can be easily show as follows.

(AAN? = AATAAT = (AATA) AT = AAT,
using the first of the Moore-Penrose condition.

(3) (AAT)* = AAT:
This is simply the third of the Moore-Penrose condition listed above.

(4) For anyxe R(A), AATx =x:
Becausex € R(A), there existy € C" such thatt = Ay. Now,

AATx = AATAy = Ay = x,

where the first of the Moore-Penrose condition was used again.
Therefore,AAT is an orthogonal projector onfR(A).

14



