
Problem 1 (20 pts)

(a) (5 pts) Define aunitarymatrix and anorthogonalmatrix and describe their difference.

Answer: The difference is that the unitarity is for complex-valued matrices and the orthogonality
is for real-valued matrices. They are defined as follows.

• Let A ∈ Cm×m. ThenA is a unitary matrix ifA∗A = A A∗ = Im×m. Alternatively, you
can say that the columns ofA constitute an orthonormal basis forCm.

• Let A ∈ Rm×m. ThenA is an orthogonal matrix ifAT A = A AT = Im×m. Alternatively,
you can say that the columns ofA constitute an orthonormal basis forRm.

(b) (7 pts) LetA be a matrix of sizem ×n. Let P be any unitary matrix of sizem ×m. Prove that
‖A‖2 = ‖PA‖2.

Answer: Consider anyx ∈Cn. Then

‖PAx‖2
2 = 〈PAx ,PAx〉

= (PAx)∗(PAx)

= x∗A∗P∗PAx

= x∗A∗Ax sinceP is unitary;

= 〈Ax , Ax〉
= ‖Ax‖2

2.

Hence,
‖PA‖2 = max

‖x‖2=1
‖PAx‖2 = max

‖x‖2=1
‖Ax‖2 = ‖A‖2.

(c) (8 pts) LetA be a matrix of sizem ×n. Let Q be any unitary matrix of sizen ×n. Prove that
‖A‖2 = ‖AQ‖2.

Answer: Consider anyx ∈ Cn. Then lety = Qx ∈ Cn. SinceQ is unitary,‖y‖2 = ‖Qx‖2 = ‖x‖2

with the same argument in Part (a). Now, we have

‖AQ‖2 = max
‖x‖2=1

‖AQx‖2 = max
‖y‖2=1

‖Ay‖2 = ‖A‖2.
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Problem 2 (20 pts) Consider the following matrix.

A =


1 1 1
ε 0 0
0 ε 0
0 0 ε

 ,

whereε= 10−2. Using the 2-digit floating-point arithmetic, compute the reduced QR factor-
ization of A using themodifiedGram-Schmidt procedure. Note that reduced QR factoriza-
tion means thatQ is of size4×3 andR is of size3×3. You can also use the following approxi-
mation: f l (

p
2) = 1.4, f l (1/

p
2) = 0.71, f l (

p
1.5) = 1.2, f l (1/

p
1.5) = 0.82, f l (0.712) = 0.50,

f l (1/0.71) = 1.4, f l (1/1.2) = 0.83.

Answer: Let us proceed step by step. Leta j , j = 1,2,3 be the column vectors ofA.

Step 1: Normalizea1 to getq 1, i.e.,

r11 = ‖a1‖2 = f l (
√

1+ε2) = 1.

q 1 = a1/r11 =


1
ε

0
0

=


1

0.010
0
0

 .

Step 2: Remove theq 1 component froma2 anda3 immediately. Thus, we have:

r12 =
〈

q 1, a2
〉= [

1 ε 0 0
]


1
0
ε

0

= 1. ã2 = a2 − r12q 1 =


1
0
ε

0

−


1
ε

0
0

=


0
−ε
ε

0

 .

r13 =
〈

q 1, a3
〉= [

1 ε 0 0
]


1
0
0
ε

= 1. ã3 = a3 − r13q 1 =


1
0
0
ε

−


1
ε

0
0

=


0

−0.010
0

0.010

 .

Step 3: Normalizeã2 to getq 2. Then immediately subtract theq 2 component from̃a3.

r22 = ‖ã2‖2 = f l (ε ·p2) = 0.014. q 2 = ã2/r22 = f l (1/0.014) ·


0
−ε
ε

0

=


0

−0.71
0.71

0

 .

r23 =
〈

q 2, ã3
〉= [

0 −0.71 0.71 0
]


0
−0.010

0
0.010

= 0.0071.
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ã3 ← ã3−r23q 2 = f l




0
−0.010

0
0.010

−0.0071 ·


0

−0.71
0.71

0


= 0.010·


0

f l (−1+·0.712)
f l (−0.712)

1

= 0.010


0

−0.50
−0.50

1

 .

Step 4: Normalizeã3 to getq 3.

r33 = ‖ã3‖2 = f l (0.010 ·
√

0.52 +0.52 +1) = 0.010 · f l (
p

1.5) = 0.012.

q 3 = ã3/r33 = f l

0.010/0.012 ·


0

−0.50
−0.50

1


=


0

−0.42
−0.42
0.83

 .

Step 5: Finally, we can form the reduced QR factorization as

A = Q̂R̂ =


1 0 0

0.010 −0.71 −0.42
0 0.71 −0.42
0 0 0.83


1 1 1

0 0.014 0.0071
0 0 0.012

 .
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Problem 3 (20 pts) LetP =
[

1 −1
0 0

]
.

(a) (5 pts) ShowP is a projector, but not an orthogonal projector.

Answer: First of all,P is a square matrix. Now we need to showP 2 = P . But this is easy:

P 2 =
[

1 −1
0 0

][
1 −1
0 0

]
=

[
1 −1
0 0

]
= P.

Therefore,P is a projector. However,P is not an orthogonal projector because it is clear that
P T 6= P in this case.

(b) (5 pts) Show thatR2 = R(P )⊕N(P ). Moreover, show thatR(P ) is not orthogonal toN(P ).
[Hint: Obtain the spanning sets ofR(P ) andN(P ).]

Answer: Let x =
[

x1

x2

]
be any vector inR2. Then,

P x =
[

1 −1
0 0

][
x1

x2

]
=

[
x1 −x2

0

]
= (x1 −x2)

[
1
0

]
,

wherex1, x2 are arbitrary. Therefore, clearly,R(P ) = span

{[
1
0

]}
.

Now take anyx ∈N(P ). Then fromP x = 0, we immediately see thatx1 = x2. In other words,

N(P ) = span

{[
1
1

]}
.

Since
[

1
0

]
and

[
1
1

]
are linearly independent, but not mutually orthogonal, we clearly have:

R2 =R(P )⊕N(P ),

butR(P ) andN(P ) are not orthogonal.
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(c) (5 pts) Show thatR2 =R(P T )
⊥⊕N(P ). Note that you need to show thatR(P T ) is orthogonal to

N(P ). [Hint: Obtain the spanning sets ofR(P T ) andN(P ).]

Answer: We do similarly with Part (b). Letx =
[

x1

x2

]
be any vector inR2.

P T x =
[

1 0
−1 0

][
x1

x2

]
=

[
x1

−x1

]
= x1

[
1
−1

]
.

So,R(P T ) = span

{[
1
−1

]}
. From Part (b), we already know thatN(P ) = span

{[
1
1

]}
. Be-

cause
[

1
−1

]
and

[
1
1

]
are linearly independent, and mutually orthogonal, we clearly have:

R2 =R(P T )
⊥⊕N(P ).

(d) (5 pts) Show thatR2 =R(P )
⊥⊕N(P T ). Note that you need to show thatR(P ) is orthogonal to

N(P T ). [Hint: Obtain the spanning sets ofR(P ) andN(P T ).]

Answer: We still need to computeN(P T ). For anyx ∈N(P T ), we haveP T x = x1

[
1
−1

]
= 0. Thus,

we must havex1 = 0. But x2 is arbitrary. So,N(P T ) = span

{[
0
1

]}
. We already know

thatR(P ) = span

{[
1
0

]}
from Part (b). Because

[
1
0

]
and

[
0
1

]
are linearly independent, and

mutually orthogonal, we clearly have:

R2 =R(P )
⊥⊕N(P T ).
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Problem 4 (20 pts) Consider the following matrix:

A =
−1 0

1 −1
0 1

 .

(a) (10 pts) Compute thefull SVD of A.

Answer: If A = UΣV T , then AT A = V ΣT U T UΣV T = V ΣTΣV T . From this, we haveAT AV =
V ΣTΣ, or AT Av j =σ2

j v j , j = 1,2 in this case. So, we need to solve the eigenvalue problem

for AT A.

AT A =
[−1 10

0 −1 1

]−1 0
1 −1
0 1

=
[

2 −1
−1 2

]
.

Hence,

det(AT A−λI ) = det

([
2−λ −1
−1 2−λ

])
= (2−λ)2−(−1)2 =λ2−4λ+3 = (λ−3)(λ−1) = 0 =⇒λ= 3,1.

Since all the singular values must be nonnegative, we haveσ1 =
p

3 andσ2 = 1. Now let us

computev1 =
[

x
y

]
.

(AT A−3I )v1 = 0 ⇐⇒
[−1 −1
−1 −1

][
x
y

]
=

[−x − y
−x − y

]
=

[
0
0

]
⇐⇒ y =−x.

In other words,v1 = x

[
1
−1

]
. But we must have‖bv1‖2 = 1. So,v1 = 1p

2

[
1
−1

]
.

Now, let us computev2 =
[

x
y

]
.

(AT A− I )v1 = 0 ⇐⇒
[

1 −1
−1 1

][
x
y

]
=

[
x − y
−x + y

]
=

[
0
0

]
⇐⇒ y = x.

In other words, we havev2 = 1p
2

[
1
1

]
.

From A =UΣV T , we haveAV =UΣ. In other words,Av j =σ j u j , j = 1,2. So,

p
3u1 = A =

−1 0
1 −1
0 1

[ 1p
2

− 1p
2

]
⇐⇒ u1 = 1p

6

−1
2
−1

 .
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u2 = A =
−1 0

1 −1
0 1

[ 1p
2

1p
2

]
= 1p

2

−1
0
1

 .

We still need to findu3 that is orthogonal to bothu1 andu2 and that has a unit length. Let

u3 =
x

y
z

.

〈u1,u3〉 = 1p
6

(−x +2y − z) = 0; 〈u2,u3〉 = 1p
2

(−x + z) = 0; ⇐⇒ x = y = z.

Thus, we haveu3 = 1p
3

1
1
1

. Finally, we have the following full SVD ofA:

A =

−
1p
6

− 1p
2

1p
3

2p
6

0 1p
3

− 1p
6

1p
2

1p
3



p

3 0
0 1
0 0

[ 1p
2

− 1p
2

1p
2

1p
2

]
.
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(b) (5 pts) Compute the rank 1 approximationA1 of A.

Answer: By definition of the rank 1 approximation ofA, we have

A1 =σ1u1vT
1 =p

3 · 1p
6

−1
2
−1

 · 1p
2

[
1 −1

]= 1

2

−1 1
2 −2
−1 1

=
−1

2
1
2

1 −1
−1

2
1
2

 .

(c) (5 pts) Compute the error of the rank 1 approximation using the Frobenius norm, i.e.,
‖A− A1‖F .

Answer: We know that for a generalA of sizem ×n

‖A− A1‖F =
√
σ2

2 +·· ·σ2
n .

But in our particularA, n = 2. So,

‖A− A1‖F =
√
σ2

2 = 1.

Alternative Solution:

A− A1 =
−1 0

1 −1
0 1

−
−1

2
1
2

1 −1
−1

2
1
2

=
−1

2 −1
2

0 0
1
2

1
2

 .

Hence,

‖A− A1‖F =
√(

−1

2

)2

+
(
−1

2

)2

+
(

1

2

)2

+
(

1

2

)2

= 1.
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Problem 5 (20 pts) Consider the following documents consisting of titles of some actual mathe-
matical papers.

D1: Neural network and regression spline value function approximations for stochastic dy-
namic programming

D2: Hardy inequalities and dynamic instability of singular Yamabe metrics

D3: Boundedness of weak solutions of nondiagonal singular parabolic system equations

D4: On one nonlinear analogue of the mean value property and its application to the inves-
tigation of the nonlinear Goursat problem

D5: Atomic decompositions of weak Hardy spaces ofB-valued martingales

D6: δ-sequence approach to a two-point boundary value problem using Daubechies wavelets

D7: Decomposition strategies for large-scale continuous location-allocation problems

Now, let us consider the following terms:

T1: decomposition, decompositions

T2: singular

T3: value, values, valued

(a) (5 pts) Construct theTerm-by-Document Matrixfrom the terms and documents above. Note
that the terms arenot case sensitive.

Answer: We just need to count the occurrences of each term in each document. Thus, we have

D1 D2 D3 D4 D5 D6 D7
T1 0 0 0 0 1 0 1
T2 0 1 1 0 0 0 0
T3 1 0 0 1 1 1 0
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(b) (5 pts) Letq = (1,1,1)T be your query vector. Computecosθ j , j = 1, . . . ,7 whereθ j is an angle
betweenq andd j , i.e., thej th column vector of the term-by-document matrix you obtained
in Part (a). Then, find the best matching document to your query.

Answer: We can computecosθ j as

cosθ j =
〈

q ,d j
〉

‖q‖2‖d j‖2
, j = 1, . . . ,7,

whered j is the j th column vector of the term-by-document matrixA computed in Part (a).
Now, ‖q‖2 =

p
3 and‖d j‖2 is 1,1,1,1,

p
2,1,1 for j = 1, . . . ,7. Hence

(
cosθ j

)7
j=1 =

(
1p
3

,
1p
3

,
1p
3

,
1p
3

,

√
2

3
,

1p
3

,
1p
3

)
.

Therefore, the best match to this query isD5.
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(c) (10 pts) Describe why SVD is helpful for searching documents containing a given set of terms
for a large term-by-document matrix. (Note: No need to compute the SVD of the term-by-
document matrix of Part (a).)

Answer: There are at least two advantages to use SVD, in particular, the low rank approximation
of a large term-by-document matrixA.

(1) A contains a lot of noise (variation and ambiguity in the use of vocabulary, etc.). Thus, the low
rank approximation via SVD can filter out such noise.

(2) The computation of the match viacosθ j can be faster thanks to the low rank approximation.
In fact, let Ak =∑k

j=1σ j u j vT
j be the rankk approximation ofA where1 < k ≥ rank(A). Let

us write

Ak =UkΣkV T
k = [

u1 · · · uk
]σ1

...
σk


vT

1
...

vT
k

 .

Then, the better (and computationally faster) version of the measure of match is:

cosφ j =
〈

q , Ak e j
〉

‖q‖2‖Ak e j‖2
.

This version is faster than the original version because

‖Ak e j‖2 = ‖UkΣkV T
k e j‖2

= ‖Uk Sk e j‖2 by settingSk =ΣkV T
k ;

= ‖Uk s j‖2 s j is the j th column ofSk ;

= ‖s j‖2 sinceUk ’s columns are orthonormal,

and consequently we have

cosφ j =
〈

q ,Uk s j
〉

‖q‖2‖s j‖2
.

Now, we only needUk ,Σk ,Vk separately without explicitly formingAk = UkΣkV T
k , and

moreover,s j ’s do not depend on a query vectorq so that they can be precomputed for a
given A.
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Problem 6 (20 pts) LetA ∈Cm×n and its SVD beA =UΣV ∗. Let us assume thatrank(A) = r . Let
us now define thepseudoinverseof A as:

A† =V Σ†U∗, Σ† =
[

D−1
r×r Or×(m−r )

O(n−r )×r O(n−r )×(m−r )

]
, D−1

r×r =


1
σ1

0 · · · 0

0 1
σ2

...
...

...
... ... 0

0 · · · 0 1
σr

 ,

whereOk×` denotesk ×` matrix whose entries are all zeros.

(a) (10 pts) Supposer = n ≤ m. Then show thatA† = (A∗A)−1 A∗.

Answer: Becauser = n ≤ m, theΣ part of the SVD ofA is of the form

Σ=



σ1 · · · 0
...

...
...

0 · · · σn

O(m−n)×n


∈Rm×n .

Therefore,

A∗A =V Σ∗U∗UΣV ∗ =V Σ∗ΣV ∗ =V

σ
2
1 · · · 0
...

...
...

0 · · · σ2
n

V ∗.

Thus,

(A∗A)−1 =V


1
σ2

1
· · · 0

...
...

...
0 · · · 1

σ2
n

V ∗.
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Finally, we have

(A∗A)−1 A∗ = V


1
σ2

1
· · · 0

...
...

...
0 · · · 1

σ2
n

V ∗V Σ∗U∗

= V


1
σ2

1
· · · 0

...
...

...
0 · · · 1

σ2
n



σ1 · · · 0

∣∣∣
...

...
...

∣∣∣ On×(m−n)

0 · · · σn

∣∣∣

U∗

= V


1
σ1

· · · 0
∣∣∣

...
...

...
∣∣∣ On×(m−n)

0 · · · 1
σn

∣∣∣

U∗

= V Σ†U∗

= A†.
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(b) (10 pts) ProveA A† is an orthogonal projector ontoR(A). Hint: You can use thatA† satisfies
the followingMoore-Penrosecondition:

A A† A = A A† A A† = A†

(A A†)∗ = A A† (A† A)∗ = A† A.

Answer: To showA A† is an orthogonal projector ontoR(A), we need to show the following four
items.

(1) A A† is a square matrix of sizem ×m:
This is obvious becauseA ∈Cm×n andA† ∈Cn×m from its definition.

(2) (A A†)2 = A A†:
This can be easily show as follows.

(A A†)2 = A A† A A† = (A A† A)A† = A A†,

using the first of the Moore-Penrose condition.

(3) (A A†)∗ = A A†:
This is simply the third of the Moore-Penrose condition listed above.

(4) For anyx ∈R(A), A A†x = x:
Becausex ∈R(A), there existsy ∈Cn such thatx = Ay . Now,

A A†x = A A† Ay = Ay = x ,

where the first of the Moore-Penrose condition was used again.

Therefore,A A† is an orthogonal projector ontoR(A).
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