MAT 167 Practice Midterm Exam

The actual exam will be conducted in class on Wednesday Nov. 8, 2006

Name:
Student ID \#: \qquad
Name of Left Neighbor: \qquad
Name of Right Neighbor: \qquad If you are next to the aisle, then please write "aisle" appropriately as your left or right neighbor.

- Read each problem carefully.
- Write every step of your reasoning clearly.
- Usually, a better strategy is to solve the easiest problem first.
- This is a closed-book exam. You may not use the textbook, crib sheets, notes, or any other outside material. Do not bring your own scratch paper. Do not bring blue books.
- No calculators/laptop computers/cell phones are allowed for the exam. The exam is to test your basic understanding of the material.
- Everyone works on their own exams. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

Problem \#	Score
$1(20 \mathrm{pts})$	
$2(20 \mathrm{pts})$	
$3(20 \mathrm{pts})$	
$4(20 \mathrm{pts})$	
$5(20 \mathrm{pts})$	
Total	

Problem 1 (20 pts) Suppose we are given three data points in $\mathbb{R}^{2},(x, y)=(-\pi / 2,1),(0,1),(\pi / 2,-1)$. Now, we want to find the best function to fit these points in the form of $y=\alpha+\beta \sin x$ in the sense of the least squares.
(a) (7 pts) Write a system of equation in the form $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ as if this function passes through all these three points.
(b) (7 pts) Solve the least squares problem using the normal equation, and write the solution in the form of $y=\alpha+\beta \sin x$.
(c) (6 pts) Let $\widehat{\boldsymbol{x}}$ be the least squares solution you computed in (b). Compute the residual (or error) vector $\boldsymbol{b}-A \hat{\boldsymbol{x}}$ and its length in 2-norm. Compare this error size o the error size of the case $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and confirm that the error of the least squares solution is smaller.

Problem 2 (20 pts) Consider the following matrix:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] .
$$

(a) (5 pts) Find a basis of $\mathcal{R}(A)$. What is the rank of this matrix?
(b) (5 pts) What is $\mathcal{N}(A)$ in this case?
(c) (5 pts) Find a basis of $\mathcal{R}\left(A^{T}\right)$.
(d) (5 pts) Find a basis of $\mathcal{N}\left(A^{T}\right)$.

Problem 3 (20 pts) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transform defined by $T(x, y)=(2 x+y, x+2 y)$. Consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and the basis

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
$$

Let $U=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ be the matrix representing this basis.
(a) (5 pts) Determine $[T]_{\mathcal{B}}$ and $[\mathbf{v}]_{\mathcal{B}}$.
(b) (5 pts) Compute $[T(\mathbf{v})]_{\mathcal{B}}$ and verify that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{B}}$.
(c) (5 pts) Now, let a new basis in \mathbb{R}^{2} be

$$
\widetilde{\mathcal{B}}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} .
$$

Let $V=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ be the matrix representing this basis. Now determine the change of basis matrix $[I]_{\mathcal{B} \tilde{\mathcal{B}}}$.
(d) (5 pts) determine $[T]_{\mathcal{B} \widetilde{\mathcal{B}}}$ and demonstrate that $[I]_{\mathcal{B} \tilde{\mathcal{B}}}[T]_{\tilde{\mathcal{B}}}=[T]_{\mathcal{B} \tilde{\mathcal{B}}}$.

Problem 4 (20 pts) Consider the following matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

(a) (5 pts) Compute the Frobenius norm $\|A\|_{F}$.
(b) (4 pts) Compute the 1 -norm $\|A\|_{1}$.
(c) (7 pts) Compute the 2 -norm $\|A\|_{2}$.
(d) (4 pts) Compute the ∞-norm $\|A\|_{\infty}$.

Problem 5 (20 pts) Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of an inner product space \mathcal{V} with $\operatorname{dim} \mathcal{V}=n$.
(a) (5pts) Let $\boldsymbol{x} \in \mathcal{V}$ be any vector in \mathcal{V}. Express \boldsymbol{x} as a linear combination of the basis set \mathcal{B}, i.e., determine the linear combination coefficients, $\alpha_{1}, \ldots, \alpha_{n}$ such that $\boldsymbol{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}$.
(b) (5 pts) Prove the Pythagorean theorem:

$$
\|\boldsymbol{x}\|^{2}=\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{n}\right|^{2} .
$$

(c) (5 pts) Suppose $n=3$ and $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$, which are not orthonormal. Make this set orthonormal.
(d) (5 pts) Expand a vector $\boldsymbol{x}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ with respect to the orthonormal vectors derived in Part (c).

