Problem 1 (20 pts) Suppose we are given three data points in $\mathbb{R}^{2},(x, y)=(-\pi / 2,1),(0,1),(\pi / 2,-1)$. Now, we want to find the best function to fit these points in the form of $y=\alpha+\beta \sin x$ in the sense of the least squares.
(a) (7 pts) Write a system of equation in the form $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ as if this function passes through all these three points.

Answer: Since $\sin x=-1,0,1$ when $x=-\pi / 2,0, \pi / 2$, respectively, the system of equation can be easily written as:

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

(b) (7 pts) Solve the least squares problem using the normal equation, and write the solution in the form of $y=\alpha+\beta \sin x$.

Answer: This is simply can be solved by

$$
\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
-1
\end{array}\right] .
$$

Thus the least square solution is:

$$
y=\frac{1}{3}-\sin x \text {. }
$$

(c) (6 pts) Let $\widehat{\boldsymbol{x}}$ be the least squares solution you computed in (b). Compute the residual (or error) vector $\boldsymbol{b}-A \widehat{\boldsymbol{x}}$ and its length in 2-norm. Compare this error size o the error size of the case $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and confirm that the error of the least squares solution is smaller.

Answer: The error vector is simply,

$$
\boldsymbol{b}-A \widehat{\boldsymbol{x}}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]-\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
1 / 3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right] .
$$

Thus its 2-norm is:

$$
\left\|\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right]\right\|=\frac{\sqrt{6}}{3},
$$

which is in fact smaller than

$$
\left\|\boldsymbol{b}-A\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]\right\|=3>\frac{\sqrt{6}}{3} .
$$

Problem 2 (20 pts) Consider the following matrix:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] .
$$

(a) (5 pts) Find a basis of $\mathcal{R}(A)$. What is the rank of this matrix?

Answer: Let's compute E_{A}, the RREF of A, together with the transformation matrix $P \in \mathbb{R}^{3 \times 3}$ so that $P A=E_{A}$.
$[A \mid I]=\left[\begin{array}{llllll}1 & 0 & \mid & 1 & 0 & 0 \\ 1 & 1 & \mid & 0 & 1 & 0 \\ 1 & 2 & \mid & 0 & 0 & 1\end{array}\right] \xrightarrow[R_{3} \leftarrow R_{3}-R_{1}]{R_{2} \leftarrow R_{2}-R_{1}}\left[\begin{array}{cccccc}1 & 0 & \mid & 1 & 0 & 0 \\ 0 & 1 & \mid & -1 & 1 & 0 \\ 0 & 2 & \mid & -1 & 0 & 1\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-2 R_{2}}\left[\begin{array}{cccccc}1 & 0 & \mid & 1 & 0 & 0 \\ 0 & 1 & \mid & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1\end{array}\right]=\left[E_{A} \mid P\right]$
Therefore, we have two basic columns in A, which forms the basis of $\mathcal{R}(A)$, i.e.,

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\} .
$$

Clearly, $\operatorname{rank}(A)=2$.
(b) (5 pts) What is $\mathcal{N}(A)$ in this case?

Answer: The dimension of the input space is 2 since it is \mathbb{R}^{2}. Now from the rank-nullity theorem, we have:

$$
\operatorname{rank}(A)+\operatorname{dim} \mathcal{N}(A)=2 .
$$

$\operatorname{But} \operatorname{rank}(A)=2$. Hence, $\operatorname{dim} \mathcal{N}(A)=0$. This means that $\mathcal{N}(A)=\{\mathbf{0}\}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$.
(c) (5 pts) Find a basis of $\mathcal{R}\left(A^{T}\right)$.

Answer: The nonzero rows of E_{A} form the basis of $\mathcal{R}\left(A^{T}\right)$. Thus, the answer is:

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} .
$$

(d) (5 pts) Find a basis of $\mathcal{N}\left(A^{T}\right)$.

Answer: The row vectors of P corresponding to the zero rows of E_{A} form the basis of $\mathcal{N}\left(A^{T}\right)$. Thus, the answer is:

$$
\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right\} .
$$

Problem 3 (20 pts) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transform defined by $T(x, y)=(2 x+y, x+2 y)$. Consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and the basis

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
$$

Let $U=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ be the matrix representing this basis.
(a) (5 pts) Determine $[T]_{\mathcal{B}}$ and $[\mathbf{v}]_{\mathcal{B}}$.

Answer: Let A be the matrix associated with this linear transformation T. Then,

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x+y \\
x+2 y
\end{array}\right] \Rightarrow A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] .
$$

Now, we have

$$
[T]_{\mathcal{B}}=U^{-1} A U=\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
3 & 3 \\
1 & 5
\end{array}\right] .
$$

As for $[\mathbf{v}]_{\mathcal{B}}$, it is easy to get:

$$
[\mathbf{v}]_{\mathcal{B}}=U^{-1} \mathbf{v}=\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

(b) (5 pts) Compute $[T(\mathbf{v})]_{\mathcal{B}}$ and verify that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{B}}$.

Answer: In this case, $T(\mathbf{v})=A v$. So,

$$
[T(\mathbf{v})]_{\mathcal{B}}=[A \mathbf{v}]_{\mathcal{B}}=U^{-1} A \mathbf{v}=\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

On the other hand, using the results of Part (a), we have:

$$
[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=\frac{1}{2}\left[\begin{array}{ll}
3 & 3 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

So, they surely agree.
(c) (5 pts) Now, let a new basis in \mathbb{R}^{2} be

$$
\widetilde{\mathcal{B}}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} .
$$

Let $V=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ be the matrix representing this basis. Now determine the change of basis matrix $[I]_{\mathcal{B} \tilde{\mathcal{B}}}$.

Answer: The matrix we want to compute is:

$$
[I]_{\mathcal{B} \tilde{\mathcal{B}}}=V^{-1} U=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right] .
$$

(d) (5 pts) determine $[T]_{\mathcal{B} \widetilde{\mathcal{B}}}$ and demonstrate that $[I]_{\mathcal{B} \widetilde{\mathcal{B}}}[T]_{\widetilde{\mathcal{B}}}=[T]_{\mathcal{B} \widetilde{\mathcal{B}}}$.

Answer: This can be easily done as follows:

$$
\begin{gathered}
{[T]_{\mathcal{B} \tilde{\mathcal{B}}}=V^{-1} A U=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]=\left[\frac{1}{2}\left[\begin{array}{cc}
3 & 9 \\
-1 & 1
\end{array}\right] .\right.} \\
{[I I]_{\mathcal{B} \tilde{\mathcal{B}}}[T]_{\mathcal{B}} \frac{1}{2}\left[\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{ll}
3 & 3 \\
1 & 5
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
3 & 9 \\
-1 & 1
\end{array}\right] .}
\end{gathered}
$$

So, they surely agree.

Problem 4 (20 pts) Consider the following matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

(a) (5 pts) Compute the Frobenius norm $\|A\|_{F}$.

Answer: Using the definition of the Frobenius norm, we have

$$
\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}=\sqrt{1^{2}+1^{2}+1^{2}+(-1)^{2}+0^{2}+1^{2}}=\sqrt{5} .
$$

(b) (4 pts) Compute the 1 -norm $\|A\|_{1}$.

Answer: Using the definition of the 1-norm, we have

$$
\|A\|_{1}=\max _{j}\left\|\boldsymbol{A}_{* j}\right\|_{1}=\max \{3,2\}=3 .
$$

(c) (7 pts) Compute the 2 -norm $\|A\|_{2}$.

Answer: We need to compute the eigenvalue of $A^{T} A$ because $\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$. The characteristic equation of $A^{T} A$ is:

$$
\operatorname{det}\left(A^{T} A-\lambda I\right)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right]=(3-\lambda)(2-\lambda)=0 .
$$

Therefore, clearly, $\lambda_{\max }=3$. Thus, we have $\|A\|_{2}=\sqrt{3}$.
(d) (4 pts) Compute the ∞-norm $\|A\|_{\infty}$.

Answer: Using the definition of the ∞-norm, we have

$$
\|A\|_{\infty}=\max _{i}\left\|\boldsymbol{A}_{i *}\right\|_{1}=\max \{2,1,2\}=2 .
$$

Problem 5 (20 pts) Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be an orthonormal basis of an inner product space \mathcal{V} with $\operatorname{dim} \mathcal{V}=n$.
(a) (5pts) Let $\boldsymbol{x} \in \mathcal{V}$ be any vector in \mathcal{V}. Express \boldsymbol{x} as a linear combination of the basis set \mathcal{B}, i.e., determine the linear combination coefficients, $\alpha_{1}, \ldots, \alpha_{n}$ such that $\boldsymbol{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}$.

Answer: Taking an inner product of the both sides of the above equation with $\mathbf{u}_{j}(1 \leq j \leq n)$ gives us:

$$
\begin{aligned}
\left\langle\mathbf{u}_{j}, \boldsymbol{x}\right\rangle & =\left\langle\mathbf{u}_{j}, \alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{j} \mathbf{u}_{j}+\cdots+\alpha_{n} \mathbf{u}_{n}\right\rangle \\
& =\left\langle\mathbf{u}_{j}, \alpha_{1} \mathbf{u}_{1}\right\rangle+\cdots+\left\langle\mathbf{u}_{j}, \alpha_{j} \mathbf{u}_{j}\right\rangle+\cdots+\left\langle\mathbf{u}_{j}, \alpha_{n} \mathbf{u}_{n}\right\rangle \\
& =\alpha_{1}\left\langle\mathbf{u}_{j}, \mathbf{u}_{1}\right\rangle+\cdots+\alpha_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle+\cdots+\alpha_{n}\left\langle\mathbf{u}_{j}, \mathbf{u}_{n}\right\rangle \\
& =\alpha_{j},
\end{aligned}
$$

since $\left\langle\mathbf{u}_{j}, \mathbf{u}_{k}\right\rangle=\delta_{j k}$. This holds for all $j=1, \ldots, n$. So, we have

$$
\boldsymbol{x}=\left\langle\mathbf{u}_{1}, \boldsymbol{x}\right\rangle \mathbf{u}_{1}+\cdots+\left\langle\mathbf{u}_{n}, \boldsymbol{x}\right\rangle \mathbf{u}_{n} .
$$

(b) (5 pts) Prove the Pythagorean theorem:

$$
\|\boldsymbol{x}\|^{2}=\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{n}\right|^{2} .
$$

Answer: Using the definition of the norm induced from the inner product, we have:

$$
\begin{aligned}
\|\boldsymbol{x}\|^{2} & =\langle\boldsymbol{x}, \boldsymbol{x}\rangle \\
& =\left\langle\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}, \alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}\right\rangle \\
& =\left\langle\alpha_{1} \mathbf{u}_{1}, \alpha_{1} \mathbf{u}_{1}\right\rangle+\cdots+\left\langle\alpha_{n} \mathbf{u}_{n}, \alpha_{n} \mathbf{u}_{n}\right\rangle \quad \text { because of the orthogonality } \\
& =\left\|\alpha_{1} \mathbf{u}_{1}\right\|^{2}+\cdots+\left\|\alpha_{n} \mathbf{u}_{n}\right\|^{2} \\
& =\left|\alpha_{1}\right|^{\|}\left\|\mathbf{u}_{1}\right\|^{2}+\cdots+\left|\alpha_{n}\right|^{2}\left\|\mathbf{u}_{n}\right\|^{2} \\
& =\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{n}\right|^{2} \quad \text { because they have a unit length. }
\end{aligned}
$$

(c) (5 pts) Suppose $n=3$ and $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$, which are not orthonormal. Make this set orthonormal.

Answer: Let $\mathcal{B}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right\}$ be that initial basis. Now, using the Gram-Schmidt procedure, we make the basis vectors orthonormal as follows.

$$
\mathbf{u}_{1}=\frac{\boldsymbol{x}_{1}}{\left\|\boldsymbol{x}_{1}\right\|}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

because \boldsymbol{x}_{1} is already of unit norm.

$$
\widetilde{\mathbf{u}}_{2}=\boldsymbol{x}_{2}-\left\langle\mathbf{u}_{1}, \boldsymbol{x}_{2}\right\rangle \mathbf{u}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-1 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],
$$

which is also of unit norm. So, $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Now,

$$
\widetilde{\mathbf{u}}_{3}=\boldsymbol{x}_{3}-\left\langle\mathbf{u}_{1}, \boldsymbol{x}_{3}\right\rangle \mathbf{u}_{1}-\left\langle\mathbf{u}_{2}, \boldsymbol{x}_{3}\right\rangle \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-1 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-1 \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],
$$

which is again of unit norm. Hence, we have the orthonormal set derived from \mathcal{B} as follows:

$$
\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

(d) (5 pts) Expand a vector $\boldsymbol{x}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ with respect to the orthonormal vectors derived in Part (c).

Answer: This can be easily done because $\boldsymbol{x}=\left\langle\mathbf{u}_{1}, \boldsymbol{x}\right\rangle \mathbf{u}_{1}\left\langle\mathbf{u}_{2}, \boldsymbol{x}\right\rangle \mathbf{u}_{2}+\left\langle\mathbf{u}_{3}, \boldsymbol{x}\right\rangle \mathbf{u}_{3}$. The only thing to do is to compute these three inner products, which are in fact, $1,-2$, and 1 , respectively. Thus, we have

$$
\boldsymbol{x}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=1 \cdot \mathbf{u}_{1}-2 \cdot \mathbf{u}_{2}+1 \cdot \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

