- **Problem 1** (20 pts) We would like to find the best line for the given three points $(0, \alpha)$, (1, 1), (2, 2) in the plane \mathbb{R}^2 in the least squares sense, where α is some real-valued parameter.
- (a) (6 pts) Let us write an equation of line as y = px + q. Then write a system of equation of the form Ax = b where $x = \begin{bmatrix} q \\ p \end{bmatrix}$, as if the line passes through all the three points.
- Answer: Entering x = 0, 1, 2 and $y = \alpha, 1, 2$, respectively to the equation of line y = px + q yields the following system of equations.

$$\boxed{\underbrace{\begin{bmatrix}1 & 0\\1 & 1\\1 & 2\end{bmatrix}}_{A} \underbrace{\begin{bmatrix}q\\p\end{bmatrix}}_{x} = \underbrace{\begin{bmatrix}\alpha\\1\\2\end{bmatrix}}_{b}}$$

- (b) (7 pts) Show that this system is inconsistent (i.e., the line cannot pass all the three points) if $\alpha \neq 0$. What happens when $\alpha = 0$?
- Answer: Form the augmented matrix, and obtain its Reduced Row Echelon Form:

$$\begin{bmatrix} 1 & 0 & | & \alpha \\ 1 & 1 & | & 1 \\ 1 & 2 & | & 2 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{bmatrix} 1 & 0 & | & \alpha \\ 0 & 1 & | & 1 - \alpha \\ 0 & 2 & | & 2 - \alpha \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{bmatrix} 1 & 0 & | & \alpha \\ 0 & 1 & | & 1 - \alpha \\ 0 & 0 & | & \alpha \end{bmatrix}$$

So, if $\alpha \neq 0$, then the (3,3) element α does not match with the zero elements of the last row. Therefore, this system is inconsistent.

If $\alpha = 0$, then the system is consistent. By inserting $\alpha = 0$ to the above matrix, we get:

1	0	0]	
0	1	1	,
0	0	0	

which means that the solution is (q, p) = (0, 1). Thus, we have the line y = x passing through all these three points if $\alpha = 0$.

(c) (7 pts) Form the normal equation, and compute the best line by solving this normal equation.

Answer: This is simply can be solved by

$$\begin{bmatrix} q \\ p \end{bmatrix} = (A^T A)^{-1} A^T \boldsymbol{b} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} \alpha + 3 \\ 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} \alpha + 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{5\alpha}{6} \\ 1 - \frac{\alpha}{2} \end{bmatrix}.$$

Thus the least square solution is:

$$y = \left(1 - \frac{\alpha}{2}\right)x + \frac{5\alpha}{6}$$

Problem 2 (20 pts) Consider the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}.$$

(a) (5 pts) Find a basis of $\mathcal{R}(A)$.

Answer: Let's compute E_A , the RREF of A, together with the transformation matrix $P \in \mathbb{R}^{2 \times 2}$ so that $PA = E_A$.

$$A = \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 \\ 2 & 2 & 0 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 \\ 0 & 2 & -4 & | & -2 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow (1/2)R_2} \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 \\ 0 & 1 & -2 & | & -1 & 1/2 \end{bmatrix} = E_A$$

Thus it is clear that the first two columns are the basic columns of *A*, which are the basis of $\mathcal{R}(A)$. In other words,

ſ	$\left[1\right]$		[0]	1	
Ì	2	,	2	Ś	•

- (**b**) (5 pts) Find a basis of $\mathcal{N}(A)$.
- Answer: We need to solve the homogeneous system of equations, Ax = 0. Since we already know the RREF E_A , we need to solve:

$$E_A \boldsymbol{x} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

From this, we get the following equations:

$$\begin{cases} x+2z = 0\\ y-2z = 0. \end{cases}$$

Thus, z is a free variable, and the general solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2z \\ 2z \\ z \end{bmatrix} = z \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} = z \cdot \boldsymbol{h}_1.$$

Therefore, the basis of $\mathcal{N}(A)$ is

(c) (5 pts) Find a basis of $\mathcal{R}(A^T)$.

Answer: The nonzero rows of E_A form a basis $\mathcal{R}(A^T)$. Therefore, the answer is:

ſ	[1]		[0]		
{	0	,	1	}	•
l	2		-2	J	

(d) (5 pts) What is $\mathcal{N}(A^T)$ in this case?

Answer: Using the Rank-Nullity Theorem for A^T , we have:

$$\dim(\mathcal{R}(A^T)) + \dim(\mathcal{N}(A^T)) = 2$$

And clearly dim($\Re(A^T)$) = rank(A^T) = rank(A) = 2. Therefore, dim($\Re(A^T)$) = 0, which means that

$$\mathcal{N}(A^T) = \{\mathbf{0}\} = \left\{ \begin{bmatrix} 0\\ 0 \end{bmatrix} \right\}.$$

Problem 3 (20 pts) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transform defined by $T(x, y) = \left(\frac{\sqrt{3}x+y}{2}, \frac{-x+\sqrt{3}y}{2}\right)$. Consider the vector $\mathbf{v} = \begin{bmatrix} 1\\1 \end{bmatrix}$ and the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \right\}.$$

(a) (6 pts) Determine $[T]_{\mathcal{B}}$ and $[v]_{\mathcal{B}}$.

Answer: Let A be the matrix associated with this linear transformation T. Then,

$$A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}x+y}{2}\\ \frac{-x+\sqrt{3}y}{2} \end{bmatrix} \Longrightarrow A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2}\\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

Let U be a matrix representing the basis \mathcal{B} , i.e.,

$$U = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Now, we have

$$[T]_{\mathcal{B}} = U^{-1}AU = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

As for $[v]_{\mathcal{B}}$, it is easy to get:

$$[\mathbf{v}]_{\mathcal{B}} = U^{-1}\mathbf{v} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1+\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} \end{bmatrix}.$$

(**b**) (7 pts) Compute $[T(\mathbf{v})]_{\mathcal{B}}$ and verify that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{B}}$.

Answer: In this case,

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}+1}{2} \\ \frac{\sqrt{3}-1}{2} \end{bmatrix}.$$

So,

$$[T(\mathbf{v})]_{\mathcal{B}} = U^{-1}(A\mathbf{v}) = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}+1}{2} \\ \frac{\sqrt{3}-1}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

On the other hand, using the results of Part (a), we have:

$$[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1+\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

So, they surely agree.

(c) (7 pts) Now, let a new basis in \mathbb{R}^2 be

$$\widetilde{\mathcal{B}} = \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\}.$$

Then determine $[T]_{\mathcal{B}\widetilde{B}}$.

Answer: Let \widetilde{U} be a matrix representing the basis $\widetilde{\mathcal{B}}$:

$$\widetilde{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

So, $[T]_{\mathcal{B}\widetilde{B}}$ can be easily computed as follows:

$$\begin{split} [T]_{\mathcal{B}\widetilde{\mathcal{B}}} &= \widetilde{U}^{-1}AU \\ &= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \\ &= \frac{1}{4\sqrt{2}} \begin{bmatrix} \sqrt{3}+1 & -\sqrt{3}+1 \\ \sqrt{3}-1 & \sqrt{3}+1 \end{bmatrix} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{2\sqrt{2}} \begin{bmatrix} \sqrt{3}-1 & -\sqrt{3}-1 \\ \sqrt{3}+1 & \sqrt{3}-1 \end{bmatrix} \end{bmatrix}. \end{split}$$

Score of this page:

Problem 4 (20 pts) Consider the following matrix

$$R_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}, \quad 0 \le \theta \le \frac{\pi}{2}$$

(a) (5 pts) Compute the Frobenius norm $||R_{\theta}||_F$.

Answer: Using the definition of the Frobenius norm, we have

$$\|R_{\theta}\|_F = \sqrt{2\left(\cos^2\theta + \sin^2\theta\right)} = \sqrt{2}.$$

(**b**) (5 pts) Explain why $||R_{\theta}||_2 = 1$.

Answer:

(c) (5 pts) Show that $||R_{\theta}||_1 = ||R_{\theta}||_{\infty}$.

Answer: Using the definition of the 1-norm, we have

$$\|R_{\theta}\|_{1} = \max_{j} \|\mathbf{R}_{\theta,*j}\|_{1} = |\cos\theta| + |\sin\theta| = \cos\theta + \sin\theta \quad \text{since } 0 \le \theta \le \frac{\pi}{2}.$$

Similarly, we have:

$$|R_{\theta}||_{\infty} = \max_{i} ||\mathbf{R}_{\theta,i*}||_{1} = |\cos\theta| + |\sin\theta| = \cos\theta + \sin\theta.$$

Hence, in this case, we have

$$\|R_{\theta}\|_1 = \|R_{\theta}\|_{\infty}.$$

(d) (5 pts) For what value of θ is $||R_{\theta}||_1$ maximized? What is that maximum value of $||R_{\theta}||_1$? Answer: The easiest way to solve this problem is to use the trigonometric identity, i.e.,

$$||R_{\theta}||_{1} = \cos\theta + \sin\theta = \sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right)$$

Because $0 \le \theta \le \frac{\pi}{2}$, this quantity attains the maximum at $\theta = \frac{\pi}{4}$. And the maximum value is $\|R_{\pi/4}\|_1 = \sqrt{2}$.

Note that you can also derive this maximum value by calculus without using the above trig. identity, i.e., taking the derivative of $\cos\theta + \sin\theta$, setting it to 0, and finding the root, which is the extremal point.

- **Problem 5** (20 pts) Let $\mathcal{B} = {\mathbf{u}_1, ..., \mathbf{u}_k}$ be an *orthonormal set* of an inner product space \mathcal{V} with dim $\mathcal{V} = n$.
- (a) (5 pts) Prove that $\mathbf{u}_1, \dots, \mathbf{u}_k$ are linearly independent if $k \le n$.

Answer: Let us form a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_k$,

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \mathbf{0},$$

where α_i is a scalar, $1 \le j \le k$. Taking the inner product of the above with \mathbf{u}_i , we have

$$\langle \mathbf{u}_{j}, \alpha_{1}\mathbf{u}_{1} + \dots + \alpha_{k}\mathbf{u}_{k} \rangle = \langle \mathbf{u}_{j}, \mathbf{0} \rangle \langle \mathbf{u}_{j}, \alpha_{1}\mathbf{u}_{1} \rangle + \dots + \langle \mathbf{u}_{j}, \alpha_{k}\mathbf{u}_{k} \rangle = 0 \alpha_{1} \langle \mathbf{u}_{j}, \mathbf{u}_{1} \rangle + \dots + \alpha_{n} \langle \mathbf{u}_{j}, \mathbf{u}_{k} \rangle = 0 \alpha_{j} \langle \mathbf{u}_{j}, \mathbf{u}_{j} \rangle = 0$$
due to the orthogonality
 $\alpha_{j} = 0$ due to the normality,

which is true for any $1 \le j \le k \le n$. Thus, $\{\mathbf{u}_j\}_1^k$ is a linearly independent set.

- (b) (5 pts) For k > n, prove that $\mathbf{u}_1, \dots, \mathbf{u}_k$ are linearly dependent.
- Answer: Because the dimension of \mathcal{V} is *n*, the maximum number of linearly independent vectors we can have is less than or equal to *n*. Therefore, if k > n, some of the vectors $\{\mathbf{u}_j\}_{1}^{k}$ must be linearly dependent.

- (c) (5 pts) Suppose now $\mathcal{V} = \mathbb{R}^3$ and $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$, which are not an orthonormal set. Make these vectors orthonormal.
- **Answer:** We apply the classical Gram-Schmidt procedure to these vectors. Let us denote these three vectors as x_1, x_2, x_3 . Let $\{u_1, u_2, u_3\}$ be their orthonormal version. Then,

$$\mathbf{u}_{1} = \frac{\mathbf{x}_{1}}{\|\mathbf{x}_{1}\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}.$$
$$\widetilde{\mathbf{u}}_{2} = \mathbf{x}_{2} - \langle \mathbf{u}_{1}, \mathbf{x}_{2} \rangle \mathbf{u}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1&0&1 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$$

Thus,

$$\mathbf{u}_2 = \frac{\widetilde{\mathbf{u}}_2}{\|\widetilde{\mathbf{u}}_2\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}.$$

Now,

$$\widetilde{\mathbf{u}}_{3} = \mathbf{x}_{3} - \langle \mathbf{u}_{1}, \mathbf{x}_{3} \rangle \mathbf{u}_{1} - \langle \mathbf{u}_{2}, \mathbf{x}_{3} \rangle \mathbf{u}_{2}$$

$$= \begin{bmatrix} 2\\1\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\1\\0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2\\1\\0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

$$= \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \mathbf{u}_{3} \text{ already unit length.}$$

Thus, we have the following orthonormal basis:

$$\left\{\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\1\end{bmatrix},\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right\}.$$

(d) (5 pts) Expand a vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ with respect to the orthonormal vectors derived in Part (b).

Answer: We can expand this vector \boldsymbol{x} easily as follows:

$$\mathbf{x} = \langle \mathbf{u}_1, \mathbf{x} \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{x} \rangle \mathbf{u}_2 + \langle \mathbf{u}_3, \mathbf{x} \rangle \mathbf{u}_3$$

= $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mathbf{u}_1 + \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mathbf{u}_2 + \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \mathbf{u}_3$
= $\sqrt{2} \cdot \mathbf{u}_1 + 0 \cdot \mathbf{u}_2 + \mathbf{u}_3$.