Problem 1 (20 pts) We would like to find the best line for the given three points $(0, \alpha),(1,1)$, $(2,2)$ in the plane \mathbb{R}^{2} in the least squares sense, where α is some real-valued parameter.
(a) (6 pts) Let us write an equation of line as $y=p x+q$. Then write a system of equation of the form $A \boldsymbol{x}=\boldsymbol{b}$ where $\boldsymbol{x}=\left[\begin{array}{l}q \\ p\end{array}\right]$, as if the line passes through all the three points.

Answer: Entering $x=0,1,2$ and $y=\alpha, 1,2$, respectively to the equation of line $y=p x+q$ yields the following system of equations.

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
q \\
p
\end{array}\right]}_{\boldsymbol{x}}=\underbrace{\left[\begin{array}{c}
\alpha \\
1 \\
2
\end{array}\right]}_{\boldsymbol{b}}
$$

(b) (7 pts) Show that this system is inconsistent (i.e., the line cannot pass all the three points) if $\alpha \neq 0$. What happens when $\alpha=0$?

Answer: Form the augmented matrix, and obtain its Reduced Row Echelon Form:

$$
\left[\begin{array}{cc:c}
1 & 0 & \mid \\
1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right] \xrightarrow[R_{3} \leftarrow R_{3}-R_{1}]{R_{2} \leftarrow R_{2}-R_{1}}\left[\begin{array}{cc:c}
1 & 0 & \mid \\
0 & 1 & 1-\alpha \\
0 & 2 & 2-\alpha
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-2 R_{2}}\left[\begin{array}{cc:c}
1 & 0 & \alpha \\
0 & 1 & 1-\alpha \\
0 & 0 & \alpha
\end{array}\right]
$$

So, if $\alpha \neq 0$, then the $(3,3)$ element α does not match with the zero elements of the last row. Therefore, this system is inconsistent.
If $\alpha=0$, then the system is consistent. By inserting $\alpha=0$ to the above matrix, we get:

$$
\left[\begin{array}{ll|l}
1 & 0 & \mid \\
0 & 1 & \mid \\
0 & 0 & 1 \\
0
\end{array}\right],
$$

which means that the solution is $(q, p)=(0,1)$. Thus, we have the line $y=x$ passing through all these three points if $\alpha=0$.
(c) (7 pts) Form the normal equation, and compute the best line by solving this normal equation.

Answer: This is simply can be solved by

$$
\left[\begin{array}{l}
q \\
p
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}=\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]^{-1}\left[\begin{array}{c}
\alpha+3 \\
5
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
5 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{c}
\alpha+3 \\
5
\end{array}\right]=\left[\begin{array}{c}
\frac{5 \alpha}{6} \\
1-\frac{\alpha}{2}
\end{array}\right] .
$$

Thus the least square solution is:

$$
y=\left(1-\frac{\alpha}{2}\right) x+\frac{5 \alpha}{6} .
$$

Problem 2 (20 pts) Consider the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] .
$$

(a) (5 pts) Find a basis of $\mathcal{R}(A)$.

Answer: Let's compute E_{A}, the RREF of A, together with the transformation matrix $P \in \mathbb{R}^{2 \times 2}$ so that $P A=E_{A}$.

$$
A=\left[\begin{array}{lll|ll}
1 & 0 & 2 & \mid & 1
\end{array}\right)
$$

Thus it is clear that the first two columns are the basic columns of A, which are the basis of $\mathcal{R}(A)$. In other words,

$$
\left\{\left\{\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right\} .
$$

(b) (5 pts) Find a basis of $\mathcal{N}(A)$.

Answer: We need to solve the homogeneous system of equations, $A \boldsymbol{x}=\mathbf{0}$. Since we already know the RREF E_{A}, we need to solve:

$$
E_{A} \boldsymbol{x}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From this, we get the following equations:

$$
\left\{\begin{aligned}
x+2 z & =0 \\
y-2 z & =0 .
\end{aligned}\right.
$$

Thus, z is a free variable, and the general solution is:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 z \\
2 z \\
z
\end{array}\right]=z\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=z \cdot \boldsymbol{h}_{1} .
$$

Therefore, the basis of $\mathcal{N}(A)$ is

$$
\left\{\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} .
$$

(c) (5 pts) Find a basis of $\mathcal{R}\left(A^{T}\right)$.

Answer: The nonzero rows of E_{A} form a basis $\mathcal{R}\left(A^{T}\right)$. Therefore, the answer is:
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]\right\}$.
(d) (5 pts) What is $\mathcal{N}\left(A^{T}\right)$ in this case?

Answer: Using the Rank-Nullity Theorem for A^{T}, we have:

$$
\operatorname{dim}\left(\mathcal{R}\left(A^{T}\right)\right)+\operatorname{dim}\left(\mathcal{N}\left(A^{T}\right)\right)=2
$$

And clearly $\operatorname{dim}\left(\mathcal{R}\left(A^{T}\right)\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=2$. Therefore, $\operatorname{dim}\left(\mathcal{N}\left(A^{T}\right)\right)=0$, which means that

$$
\mathcal{N}\left(A^{T}\right)=\{\mathbf{0}\}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} .
$$

Problem 3 (20 pts) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transform defined by $T(x, y)=\left(\frac{\sqrt{3} x+y}{2}, \frac{-x+\sqrt{3} y}{2}\right)$. Consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the basis

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
\frac{1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right],\left[\begin{array}{c}
-\frac{\sqrt{3}}{2} \\
\frac{1}{2}
\end{array}\right]\right\} .
$$

(a) (6 pts) Determine $[T]_{\mathcal{B}}$ and $[\mathbf{v}]_{\mathcal{B}}$.

Answer: Let A be the matrix associated with this linear transformation T. Then,

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3} x+y}{2} \\
\frac{-x+\sqrt{3} y}{2}
\end{array}\right] \Rightarrow A=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] .
$$

Let U be a matrix representing the basis \mathcal{B}, i.e.,

$$
U=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] .
$$

Now, we have

$$
[T]_{\mathcal{B}}=U^{-1} A U=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] .
$$

As for $[\mathbf{v}]_{\mathcal{B}}$, it is easy to get:

$$
[\mathbf{v}]_{\mathcal{B}}=U^{-1} \mathbf{v}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1+\sqrt{3}}{2} \\
\frac{1-\sqrt{3}}{2}
\end{array}\right] .
$$

(b) (7 pts) Compute $[T(\mathbf{v})]_{\mathcal{B}}$ and verify that $[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{B}}$.

Answer: In this case,

$$
T(\mathbf{v})=A \mathbf{v}=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}+1}{2} \\
\frac{\sqrt{3}-1}{2}
\end{array}\right] .
$$

So,

$$
[T(\mathbf{v})]_{\mathcal{B}}=U^{-1}(A \mathbf{v})=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{3}+1}{2} \\
\frac{\sqrt{3}-1}{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

On the other hand, using the results of Part (a), we have:

$$
[T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1+\sqrt{3}}{2} \\
\frac{1-\sqrt{3}}{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

So, they surely agree.
(c) (7 pts) Now, let a new basis in \mathbb{R}^{2} be

$$
\widetilde{\mathcal{B}}=\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\right\} .
$$

Then determine $[T]_{\mathcal{B} \tilde{\mathcal{B}}}$.
Answer: Let \widetilde{U} be a matrix representing the basis $\widetilde{\mathcal{B}}$:

$$
\widetilde{U}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

So, $[T]_{\mathcal{B} \tilde{\mathcal{B}}}$ can be easily computed as follows:

$$
\begin{aligned}
{[T]_{\mathcal{B} \tilde{\mathcal{B}}} } & =\widetilde{U}^{-1} A U \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right] \\
& =\frac{1}{4 \sqrt{2}}\left[\begin{array}{cc}
\sqrt{3}+1 & -\sqrt{3}+1 \\
\sqrt{3}-1 & \sqrt{3}+1
\end{array}\right]\left[\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right] \\
& =\frac{1}{2 \sqrt{2}}\left[\begin{array}{cc}
\sqrt{3}-1 & -\sqrt{3}-1 \\
\sqrt{3}+1 & \sqrt{3}-1
\end{array}\right] .
\end{aligned}
$$

Problem 4 (20 pts) Consider the following matrix

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

(a) (5 pts) Compute the Frobenius norm $\left\|R_{\theta}\right\|_{F}$.

Answer: Using the definition of the Frobenius norm, we have

$$
\left\|R_{\theta}\right\|_{F}=\sqrt{2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\sqrt{2} .
$$

(b) (5 pts) Explain why $\left\|R_{\theta}\right\|_{2}=1$.

Answer:

(c) (5 pts) Show that $\left\|R_{\theta}\right\|_{1}=\left\|R_{\theta}\right\|_{\infty}$.

Answer: Using the definition of the 1-norm, we have

$$
\left\|R_{\theta}\right\|_{1}=\max _{j}\left\|\boldsymbol{R}_{\theta, * j}\right\|_{1}=|\cos \theta|+|\sin \theta|=\cos \theta+\sin \theta \quad \text { since } 0 \leq \theta \leq \frac{\pi}{2} .
$$

Similarly, we have:

$$
\left\|R_{\theta}\right\|_{\infty}=\max _{i}\left\|\boldsymbol{R}_{\theta, i *}\right\|_{1}=|\cos \theta|+|\sin \theta|=\cos \theta+\sin \theta .
$$

Hence, in this case, we have

$$
\left\|R_{\theta}\right\|_{1}=\left\|R_{\theta}\right\|_{\infty} \text {. }
$$

(d) (5 pts) For what value of θ is $\left\|R_{\theta}\right\|_{1}$ maximized? What is that maximum value of $\left\|R_{\theta}\right\|_{1}$?

Answer: The easiest way to solve this problem is to use the trigonometric identity, i.e.,

$$
\left\|R_{\theta}\right\|_{1}=\cos \theta+\sin \theta=\sqrt{2} \cos \left(\theta-\frac{\pi}{4}\right) .
$$

Because $0 \leq \theta \leq \frac{\pi}{2}$, this quantity attains the maximum at $\theta=\frac{\pi}{4}$. And the maximum value is $\| R_{\pi / 4 \|_{1}=\sqrt{2}}$.

Note that you can also derive this maximum value by calculus without using the above trig. identity, i.e., taking the derivative of $\cos \theta+\sin \theta$, setting it to 0 , and finding the root, which is the extremal point.

Problem 5 (20 pts) Let $\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be an orthonormal set of an inner product space \mathcal{V} with $\operatorname{dim} \mathcal{V}=n$.
(a) (5 pts) Prove that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent if $k \leq n$.

Answer: Let us form a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$,

$$
\alpha_{1} \mathbf{u}_{1}+\cdots \alpha_{k} \mathbf{u}_{k}=\mathbf{0},
$$

where α_{j} is a scalar, $1 \leq j \leq k$. Taking the inner product of the above with \mathbf{u}_{j}, we have

$$
\begin{aligned}
\left\langle\mathbf{u}_{j}, \alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}\right\rangle & =\left\langle\mathbf{u}_{j}, \mathbf{0}\right\rangle \\
\left\langle\mathbf{u}_{j}, \alpha_{1} \mathbf{u}_{1}\right\rangle+\cdots+\left\langle\mathbf{u}_{j}, \alpha_{k} \mathbf{u}_{k}\right\rangle & =0 \\
\alpha_{1}\left\langle\mathbf{u}_{j}, \mathbf{u}_{1}\right\rangle+\cdots+\alpha_{n}\left\langle\mathbf{u}_{j}, \mathbf{u}_{k}\right\rangle & =0 \\
\alpha_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle & =0 \quad \text { due to the orthogonality } \\
\alpha_{j} & =0 \quad \text { due to the normality, }
\end{aligned}
$$

which is true for any $1 \leq j \leq k \leq n$. Thus, $\left\{\mathbf{u}_{j}\right\}_{1}^{k}$ is a linearly independent set.
(b) (5 pts) For $k>n$, prove that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly dependent.

Answer: Because the dimension of \mathcal{V} is n, the maximum number of linearly independent vectors we can have is less than or equal to n. Therefore, if $k>n$, some of the vectors $\left\{\mathbf{u}_{j}\right\}_{1}^{k}$ must be linearly dependent.
(c) (5 pts) Suppose now $\mathcal{V}=\mathbb{R}^{3}$ and $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$, which are not an orthonormal set. Make these vectors orthonormal.

Answer: We apply the classical Gram-Schmidt procedure to these vectors. Let us denote these three vectors as $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be their orthonormal version. Then,

$$
\begin{gathered}
\mathbf{u}_{1}=\frac{\boldsymbol{x}_{1}}{\left\|\boldsymbol{x}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] . \\
\widetilde{\mathbf{u}}_{2}=\boldsymbol{x}_{2}-\left\langle\mathbf{u}_{1}, \boldsymbol{x}_{2}\right\rangle \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
\end{gathered}
$$

Thus,

$$
\mathbf{u}_{2}=\frac{\widetilde{\mathbf{u}}_{2}}{\left\|\widetilde{\mathbf{u}}_{2}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
$$

Now,

$$
\begin{aligned}
\widetilde{\mathbf{u}}_{3} & =\boldsymbol{x}_{3}-\left\langle\mathbf{u}_{1}, \boldsymbol{x}_{3}\right\rangle \mathbf{u}_{1}-\left\langle\mathbf{u}_{2}, \boldsymbol{x}_{3}\right\rangle \mathbf{u}_{2} \\
& =\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{u}_{3} \text { already unit length. }
\end{aligned}
$$

Thus, we have the following orthonormal basis:

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

(d) (5 pts) Expand a vector $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ with respect to the orthonormal vectors derived in Part (b).

Answer: We can expand this vector \boldsymbol{x} easily as follows:

$$
\begin{aligned}
\boldsymbol{x} & =\left\langle\mathbf{u}_{1}, \boldsymbol{x}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{u}_{2}, \boldsymbol{x}\right\rangle \mathbf{u}_{2}+\left\langle\mathbf{u}_{3}, \boldsymbol{x}\right\rangle \mathbf{u}_{3} \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \mathbf{u}_{1}+\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \mathbf{u}_{2}+\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \mathbf{u}_{3} \\
& =\sqrt{2} \cdot \mathbf{u}_{1}+0 \cdot \mathbf{u}_{2}+\mathbf{u}_{3} .
\end{aligned}
$$

