First of all, do the following:

• Read Chapter 2.

Problem 1. Consider a matrix $A \in \mathbb{R}^{m \times n}$. Prove the column rank of A is the same as the row rank of A.

Problem 2. Prove that for a square matrix A, $null(A) = \{0\}$ implies A is invertible.

Problem 3. Find the minimum value of $||x||_1$ subject to $||x||_2 = 1$ in \mathbb{R}^2 . Which x achieves such minimum?

[Hint: set $\boldsymbol{x} = [\cos \theta, \sin \theta]^T, 0 \le \theta \le 2\pi$.]

Problem 4. Let $\|\cdot\|$ denote any norm on \mathbb{R}^m and also the induced matrix norm on $\mathbb{R}^{m \times m}$. Let $\rho(A)$ be the *spectral* radius of A, i.e., $\rho(A) := \max_{1 \le i \le m} |\lambda_i(A)|$, where $\lambda_i(A)$ is the *i*th eigenvalue of A. Prove $\rho(A) \le \|A\|$.

Problem 5. Let $A = uv^T$ where $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Prove $||A||_2 = ||u||_2 ||v||_2$.

Problem 6. (a) Define the following matrix

$$A = \begin{bmatrix} 1 & 2\\ 0 & 2\\ 1 & 3 \end{bmatrix},$$

in MATLAB. Then, compute the 2-norm by the norm function, and report the result in a long format (16 digits) via

```
>> format long
>> norm(A)
```

(b) Compute the 2-norm explicitly using the largest eigenvalue of $A^T A$ using the eig function, i.e.,

>> sqrt(max(eig(A'*A)))

Then, compare the result with that of Part (a). What is the relative error between the norm computed in Part (a) and that in Part (b)?

(c) Compute the 1-norm, ∞-norm, and Frobenius norm of A by hand using the formulas derived in the class. Then, using the norm function, compare the MATLAB outputs with your hand-computed results. You should check how to use the norm function using the help utility:

>> help norm

(d) Let's load the MATLAB data file you used for HW1 again. It's located at http://www.math.ucdavis.edu/~saito/courses/167.s12/hw01.mat. Then, compute first the coefficient vector by

>> a = U' *x;

Now, compute $\|\boldsymbol{x}\|_p$ and $\|\boldsymbol{a}\|_p$, $p = 1, 2, \infty$, using the norm function, and report the results. Which value of p, you got $\|\boldsymbol{x}\|_p = \|\boldsymbol{a}\|_p$?

(e) Now, compute the matrix norms, $||U||_p$, $p = 1, 2, \infty$ as well as $||U||_F$ using the norm function, then report the results.