MAT 167: Homework Assignment \#2 (due Monday, April 23)

First of all, do the following:

- Read Chapter 2.

Problem 1. Consider a matrix $A \in \mathbb{R}^{m \times n}$. Prove the column rank of A is the same as the row rank of A.
Problem 2. Prove that for a square matrix $A, \operatorname{null}(A)=\{0\}$ implies A is invertible.
Problem 3. Find the minimum value of $\|\boldsymbol{x}\|_{1}$ subject to $\|\boldsymbol{x}\|_{2}=1$ in \mathbb{R}^{2}. Which \boldsymbol{x} achieves such minimum?
[Hint: set $\boldsymbol{x}=[\cos \theta, \sin \theta]^{T}, 0 \leq \theta \leq 2 \pi$.]
Problem 4. Let $\|\cdot\|$ denote any norm on \mathbb{R}^{m} and also the induced matrix norm on $\mathbb{R}^{m \times m}$. Let $\rho(A)$ be the spectral radius of A, i.e., $\rho(A):=\max _{1 \leq i \leq m}\left|\lambda_{i}(A)\right|$, where $\lambda_{i}(A)$ is the i th eigenvalue of A. Prove $\rho(A) \leq\|A\|$.

Problem 5. Let $A=\boldsymbol{u} \boldsymbol{v}^{T}$ where $\boldsymbol{u} \in \mathbb{R}^{m}$ and $\boldsymbol{v} \in \mathbb{R}^{n}$. Prove $\|A\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}$.
Problem 6. (a) Define the following matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2 \\
1 & 3
\end{array}\right]
$$

in MATLAB. Then, compute the 2 -norm by the norm function, and report the result in a long format (16 digits) via

```
>> format long
>> norm(A)
```

(b) Compute the 2-norm explicitly using the largest eigenvalue of $A^{T} A$ using the eig function, i.e.,

```
>> sqrt(max(eig(A'*A)))
```

Then, compare the result with that of Part (a). What is the relative error between the norm computed in Part (a) and that in Part (b)?
(c) Compute the 1-norm, ∞-norm, and Frobenius norm of A by hand using the formulas derived in the class. Then, using the norm function, compare the MATLAB outputs with your hand-computed results. You should check how to use the norm function using the help utility:

```
>> help norm
```

(d) Let's load the MATLAB data file you used for HW1 again. It's located at http://www.math.ucdavis.edu/~saito/courses/167.s12/hw01.mat .
Then, compute first the coefficient vector by

```
>> a = U'*x;
```

Now, compute $\|\boldsymbol{x}\|_{p}$ and $\|\boldsymbol{a}\|_{p}, p=1,2, \infty$, using the norm function, and report the results. Which value of p, you got $\|\boldsymbol{x}\|_{p}=\|\boldsymbol{a}\|_{p}$?
(e) Now, compute the matrix norms, $\|U\|_{p}, p=1,2, \infty$ as well as $\|U\|_{F}$ using the norm function, then report the results.

