First of all, do the following:

• Read Sec. 3.3, 3.6, and Chapter 4.

Problem 1. Using MATLAB, do the following procedure:

(a) Download the data file: http://www.math.ucdavis.edu/~saito/courses/167.s12/hw03.mat to your working directory, name it as hw03.mat. Then, load it into your MATLAB session. Check what variables (i.e., arrays) are defined in this data file by running:

>> whos

(b) Plot the data by:

>> plot(x,y); grid;

(c) Create the Vandermonde matrix for polynomials of degree 1 (i.e., lines) by:

>> A=[x.^0 x.^1];

(d) Compute the least squares line over the given data by:

>> sol = inv(A' *A) *A' *y;

Then, overlay the least squares line over the current plot by:

```
>> hold on; plot(x, sol(1)+sol(2)*x, '--');
```

Put title, axis labels by:

```
>> title('Least squares line fit'); xlabel('x'); ylabel('y');
```

Finally, print out this plot and submit the hardcopy of the plot.

Problem 2. Let

	[1	1			$\begin{bmatrix} 2 \end{bmatrix}$	
A =	1	1.0001	;	b =	0.0001	
	1	1.0001			4.0001	

- (a) What are the pseudoinverse A^{\dagger} and the projector $P = AA^{\dagger}$ for this example? Give exact answers (not by MATLAB).
- (b) Find the exact solutions x and y = Ax to the least squares problem $Ax \approx b$ (not by MATLAB).
- (c) The condition number of a rectangular shape matrix A is $\kappa(A) := ||A|| ||A^{\dagger}||$. Compute the condition number of A in this example using MATLAB.
- **Problem 3.** Let $A \in \mathbb{R}^{m \times m}$ be a *symmetric* matrix. As you already learned in MAT 22A or MAT 67, an *eigenvector* of A is a nonzero vector $x \in \mathbb{R}^m$ such that $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, the corresponding *eigenvalue*.
 - (a) Prove that all eigenvalues of A are real.
 - (b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are orthogonal.
- **Problem 4.** If P is an orthogonal projector, then I 2P is an orthogonal matrix. Prove this algebraically first, and then give a geometric interpretation (i.e., using a simple figure).

$$A = \begin{bmatrix} 1 & 2\\ 0 & 1\\ 1 & 0 \end{bmatrix}$$

Answer the following by hand calculation.

- (a) What is the orthogonal projector P_A onto range(A)?
- (**b**) What is the image under P_A of the vector $\boldsymbol{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$?
- **Problem 6.** We want to prove the following statement: If $A \in \mathbb{R}^{m \times n}$ is full rank, then $A^{\mathsf{T}}A$ is nonsingular (i.e., *invertible*). Let's prove this step-by-step.
 - (a) Let $x, z \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$, and consider the following:

$$||A(x + \alpha z) - b||_2^2$$

Write this quantity as a quadratic polynomial in terms of α .

- (b) Suppose x solves the least squares problem, i.e., $||Ax b||_2^2$ is minimized while $x + \alpha z$ is not a solution to the lease squares problem. Then, using Part (a), deduce $A^T(Ax b) = 0$, i.e., x is a solution to the normal equation $A^T A x = A^T b$.
- (c) Suppose both x and $x + \alpha z$ are both solutions to the same least squares problem. Show that $z \in \text{null}(A)$.
- (d) If A is full rank, then show that such z must be 0. This concludes the proof of the statement we wanted to prove, i.e., the normal equation has a unique solution, i.e., $A^{\mathsf{T}}A$ is nonsingular.