MAT 167: Homework Assignment \#3 (due Monday, April 30)

First of all, do the following:

- Read Sec. 3.3, 3.6, and Chapter 4.

Problem 1. Using MATLAB, do the following procedure:
(a) Download the data file: http://www.math.ucdavis.edu/~saito/courses/167.s12/hw03.mat to your working directory, name it as hw03.mat. Then, load it into your MATLAB session. Check what variables (i.e., arrays) are defined in this data file by running:

```
>> whos
```

(b) Plot the data by:

```
>> plot(x,y); grid;
```

(c) Create the Vandermonde matrix for polynomials of degree 1 (i.e., lines) by:

$$
\gg A=[x . \wedge 0 \text { x.^1]; }
$$

(d) Compute the least squares line over the given data by:

```
>> sol = inv(A'*A)*A'*y;
```

Then, overlay the least squares line over the current plot by:

```
>> hold on; plot(x, sol(1)+sol(2)*x, '_-');
```

Put title, axis labels by:

```
>> title('Least squares line fit'); xlabel('x'); ylabel('y');
```

Finally, print out this plot and submit the hardcopy of the plot.
Problem 2. Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1.0001 \\
1 & 1.0001
\end{array}\right] ; \quad \boldsymbol{b}=\left[\begin{array}{c}
2 \\
0.0001 \\
4.0001
\end{array}\right] .
$$

(a) What are the pseudoinverse A^{\dagger} and the projector $P=A A^{\dagger}$ for this example? Give exact answers (not by MATLAB).
(b) Find the exact solutions \boldsymbol{x} and $\boldsymbol{y}=A \boldsymbol{x}$ to the least squares problem $A \boldsymbol{x} \approx \boldsymbol{b}$ (not by MATLAB).
(c) The condition number of a rectangular shape matrix A is $\kappa(A):=\|A\|\left\|A^{\dagger}\right\|$. Compute the condition number of A in this example using MATLAB.

Problem 3. Let $A \in \mathbb{R}^{m \times m}$ be a symmetric matrix. As you already learned in MAT 22A or MAT 67 , an eigenvector of A is a nonzero vector $\boldsymbol{x} \in \mathbb{R}^{m}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$ for some $\lambda \in \mathbb{C}$, the corresponding eigenvalue.
(a) Prove that all eigenvalues of A are real.
(b) Prove that if \boldsymbol{x} and \boldsymbol{y} are eigenvectors corresponding to distinct eigenvalues, then \boldsymbol{x} and \boldsymbol{y} are orthogonal.

Problem 4. If P is an orthogonal projector, then $I-2 P$ is an orthogonal matrix. Prove this algebraically first, and then give a geometric interpretation (i.e., using a simple figure).

Problem 5. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Answer the following by hand calculation.
(a) What is the orthogonal projector P_{A} onto range (A) ?
(b) What is the image under P_{A} of the vector $\boldsymbol{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$?

Problem 6. We want to prove the following statement: If $A \in \mathbb{R}^{m \times n}$ is full rank, then $A^{\top} A$ is nonsingular (i.e., invertible). Let's prove this step-by-step.
(a) Let $\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^{n}, \boldsymbol{b} \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$, and consider the following:

$$
\|A(\boldsymbol{x}+\alpha \boldsymbol{z})-\boldsymbol{b}\|_{2}^{2} .
$$

Write this quantity as a quadratic polynomial in terms of α.
(b) Suppose \boldsymbol{x} solves the least squares problem, i.e., $\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$ is minimized while $\boldsymbol{x}+\alpha \boldsymbol{z}$ is not a solution to the lease squares problem. Then, using Part (a), deduce $A^{\top}(A \boldsymbol{x}-\boldsymbol{b})=\mathbf{0}$, i.e., \boldsymbol{x} is a solution to the normal equation $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$.
(c) Suppose both \boldsymbol{x} and $\boldsymbol{x}+\alpha \boldsymbol{z}$ are both solutions to the same least squares problem. Show that $\boldsymbol{z} \in \operatorname{null}(A)$.
(d) If A is full rank, then show that such \boldsymbol{z} must be $\mathbf{0}$. This concludes the proof of the statement we wanted to prove, i.e., the normal equation has a unique solution, i.e., $A^{\top} A$ is nonsingular.

