MAT 167: Homework Assignment \#4 (due Monday, May 7)

First of all, do the following:

- Read Chapters 4 \& 5.

Problem 1. Let $E \in \mathbb{R}^{m \times m}$ that extracts the "even part" of an m-vector: $E \boldsymbol{x}=(\boldsymbol{x}+F \boldsymbol{x}) / 2$, where $F \in \mathbb{R}^{m \times m}$ flips $\boldsymbol{x}=\left[x_{1}, \ldots, x_{m}\right]^{\top}$ to $\boldsymbol{x}=\left[x_{m}, \ldots, x_{1}\right]^{\top}$. Is E an orthogonal projector, an oblique projector, or not a projector at all? What are its entries?

Problem 2. Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and let its QR factorization (regardless of reduced or full) be $A=Q R$. Show that $\|A\|_{F}=\|R\|_{F}$.

Problem 3. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]
$$

where ϵ is a small positive number (e.g., 10^{-7}) so that ϵ^{2} can be ignored numerically.
(a) Compute the reduced QR factorization $A=\widehat{Q} \widehat{R}$ using the classical Gram-Schmidt algorithm by hand.
(b) Compute the reduced QR factorization $A=\widehat{Q} \widehat{R}$ using the modified Gram-Schmidt algorithm by hand.
(c) Compute the full QR factorization $A=Q R$ using the Householder triangularization by hand.
(d) Check the quality of these results by computing the Frobenius norm of $\left\|\widehat{Q}^{\top} \widehat{Q}-I\right\|_{F}$ for the results obtained by the CGS and MGS algorithms and $\left\|Q^{\top} Q-I\right\|_{F}$ for the result obtained by the Householder triangularization.

Problem 4. Take $m=50, n=12$. Using MATLAB's linspace, define t to be the m-vector corresponding to linearly spaced grid points from 0 to 1 . Using MATLAB's vander and fliplr, define A to be the $m \times n$ matrix associated with least squares fitting on this grid by a polynomial of order $n-1$. Take \boldsymbol{b} to be the function $\cos (4 t)$ evaluated on the grid. Now, calculate and print (to 16 digit precision) the least squares coefficient vector x by the following three methods.
(a) Solving the normal equation explicitly computing $\left(A^{\top} A\right)^{-1}$.
(b) Using the MATLAB implementation of the classical Gram-Schmidt algorithm cgs, which can be downloaded from http://www.math.ucdavis.edu/~saito/courses/167.s12/cgs.m .
(c) Using the MATLAB implementation of the modified Gram-Schmidt algorithm mgs, which can be downloaded from http://www.math.ucdavis.edu/~saito/courses/167.s12/mgs.m .
(d) QR factorization using MATLAB's qr, which is based on the Householder triangularization.
(e) $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ in MATLAB, which is also based on QR factorization.
(f) The calculations above will produce five lists of twelve coefficients. In each list, shade with red pen (or highlighter/marker) the digits appear to be wrong (affected by rounding error). Comment on what differences you observe. Do the normal equations exhibit instability? You do not have to explain your observations.

