First of all, do the following:

• Read Chapter 6.

Problem 1. Determine SVDs of the following matrices by hand calculation:

(a)
$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$
, (b) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, (c) $\begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, (e) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

[Hint: Let $A = U\Sigma V^{\mathsf{T}}$. Then, if you express $A^{\mathsf{T}}A$ using the SVD of A, then you see that σ_j^2 , v_j are the *j*th eigenvalue and the corresponding eigenvector of $A^{\mathsf{T}}A$.]

Problem 2. Let $A \in \mathbb{R}^{m \times n}$, and suppose $B \in \mathbb{R}^{n \times m}$ is obtained by rotating A 90 degree clockwise on paper. More precisely,

$$A = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} \quad B = \begin{bmatrix} a_{m1} & \cdots & a_{21} & a_{11} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mn} & \cdots & a_{2n} & a_{1n} \end{bmatrix}.$$

Do A and B have the same singular values? Prove that the answer is yes or give a counterexample.

[Hint: Express B as a product of A^{T} and a matrix P that permutes the column vectors of A^{T} .]

- **Problem 3.** Write a MATLAB program which, given a real 2×2 matrix A, plots the right singular vectors v_1 and v_2 in the unit circle and also the left singular vectors u_1 and u_2 in the appropriate ellipse, as in the figure of my Lecture 13. Apply your program to the matrices in Problem 1, and attach the resulting figures to your homework submission.
- **Problem 4** Two matrices $A, B \in \mathbb{R}^{m \times m}$ are *orthogonally equivalent* if $A = QBQ^{\mathsf{T}}$ for some orthogonal matrix Q. Is it true or false that A and B are orthogonally equivalent if and only if they have the same singular values?