MAT 167: Homework Assignment \#5 (due Monday, May 14)

First of all, do the following:

- Read Chapter 6.

Problem 1. Determine SVDs of the following matrices by hand calculation:
(a) $\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right]$,
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$,
(c) $\left[\begin{array}{ll}0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right]$,
(d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$,
(e) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
[Hint: Let $A=U \Sigma V^{\top}$. Then, if you express $A^{\top} A$ using the SVD of A, then you see that $\sigma_{j}^{2}, \boldsymbol{v}_{j}$ are the j th eigenvalue and the corresponding eigenvector of $A^{\top} A$.]

Problem 2. Let $A \in \mathbb{R}^{m \times n}$, and suppose $B \in \mathbb{R}^{n \times m}$ is obtained by rotating $A 90$ degree clockwise on paper. More precisely,

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \quad B=\left[\begin{array}{cccc}
a_{m 1} & \cdots & a_{21} & a_{11} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m n} & \cdots & a_{2 n} & a_{1 n}
\end{array}\right] .
$$

Do A and B have the same singular values? Prove that the answer is yes or give a counterexample.
[Hint: Express B as a product of A^{\top} and a matrix P that permutes the column vectors of A^{\top}.]
Problem 3. Write a MATLAB program which, given a real 2×2 matrix A, plots the right singular vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} in the unit circle and also the left singular vectors \boldsymbol{u}_{1} and \boldsymbol{u}_{2} in the appropriate ellipse, as in the figure of my Lecture 13. Apply your program to the matrices in Problem 1, and attach the resulting figures to your homework submission.

Problem 4 Two matrices $A, B \in \mathbb{R}^{m \times m}$ are orthogonally equivalent if $A=Q B Q^{\top}$ for some orthogonal matrix Q. Is it true or false that A and B are orthogonally equivalent if and only if they have the same singular values?

