
MAT 167: Homework Assignment #8 (due Wednesday, June 6)

First of all, do the following:

• Read Chapters 9, 10, & 11.

Problem 1. Using MATLAB, do the following handwritten digit recognition experiments.

(a) Download the handwritten digit database from the following link:
http://www.math.ucdavis.edu/~saito/courses/167.s12/usps.mat . Then, load this file into your MATLAB ses-
sion. This file contains 4 arrays: train patterns, test patterns of size 256×4649, and train labels,
test labels of size 10× 4649. The train patterns and test patterns contain a raster scan of the
16× 16 gray level pixel intensities, which have been normalized to range within [−1, 1]. The train labels
and test labels variables contain the ground truth information of the digit images. That is, if the jth hand-
written digit image in train patterns truly represents digit i, then the (i+1, j)th entry of train labels
is +1, and all the other entries of the jth column of train labels are -1.

Now, display the first 16 images in train patterns using subplot(4,4,k) and imagesc functions in
MATLAB. Print out the figure and attach it to your hw8 submission.

[ Hint: You need to reshape each column into a matrix of size 16× 16 followed by transposing it in order to
display it correctly. ]

(b) Now, compute the mean digits in the train patterns, put them in a matrix called train aves of size
256 × 10, and display these 10 mean digit images using subplot(2,5,k) and imagesc. Print out the
figure and attach it to your hw8 submission.

[ Hint: You can gather (or pool) all the images in train patterns corresponding to digit k−1 (1 ≤ k ≤ 10)
by the following:

>> train_patterns(:, train_labels(k,:)==1);

]

(c) Let’s conduct the simplest classification experiments as follows:

(c.1) First, prepare a matrix called test classif of size 10 × 4649 and fill this matrix by computing the Eu-
clidean distance (or its square) between each image in the test patterns and each mean digit image in
train patterns.

[ Hint: the following line computes the squared Euclidean distances between all the test digit images and the
kth mean digit of the training dataset by one line:

>> sum((test_patterns-repmat(train_aves(:,k),[1 4649])).ˆ2);

]

(c.2) Then, compute the classification results by finding the position index of the minimum of each column of
test classif. Put the results in a vector test classif res of size 1× 4649.

[ Hint: You can find the position index giving the minimum of the jth column of test classif by

>> [tmp, ind] = min(test_classif(:,j));

Then, the variable ind contains the position index (between 1 and 10) of the smallest entry of test classif(:,j).
]

1

http://www.math.ucdavis.edu/~saito/courses/167.s12/usps.mat


(c.3) Finally, compute the confusion matrix test confusion of size 10 × 10, print out this matrix, and submit
your results.

[ Hint: First gather the classification results corresponding to the kth digit by

>> tmp=test_classif_res(test_labels(k,:)==1);

This tmp array contains the results of your classification of the test digits whose true digit is k−1 (1 ≤ k ≤ 10).
In other words, if your classification results were perfect, all the entries of tmp would be k. But in reality, this
simplest classification algorithm makes mistakes, so tmp contains values other than k. You need to count how
many entries have the value j in tmp, j = 1 : 10. That would give you the kth row of the test confusion
matrix. ]

(d) Finally, let’s conduct the SVD-based classification experiments.

(d.1) Pool all the images corresponding to the kth digit train patterns, compute the rank 17 SVD of that set of
images (i.e., the first 17 singular values and vectors), and put the left singular vectors (or the matrix U ) of kth
digit into the array train u of size 256× 17× 10. For k = 1 : 10, you can do the following:

>> [train_u(:,:,k),tmp,tmp2] = svds(train_patterns(:,train_labels(k,:)==1),17);

We do not need the singular values and right singular vectors in this experiment.

(d.2) Now, compute the expansion coefficients of each test digit image with respect to the 17 singular vectors of each
train digit image set. In other words, you need to compute 17 × 10 numbers for each test digit image. Put the
results in the 3D array test svd17 of size 17× 4649× 10. This can be done by

>> for k=1:10
test_svd17(:,:,k) = train_u(:,:,k)’ * test_patterns;

end

(d.3) Next, compute the error between each original test digit image and its rank 17 approximation using the kth
digit images in the training dataset. The idea of this classification is that if a test digit image should belong to
class of k∗th digit if the corresponding rank 17 approximation is the best approximation (i.e., the smallest error)
among 10 such approximations. (See my Lecture 21 for the details). Prepare a matrix test svd17res of
size 10× 4649, and put those approximation errors into this matrix.

[ Hint: The rank 17 approximation of test digits using the 17 left singular vectors of the kth digit training images
can be computed by train u(:,:,k)*test svd17(:,:,k); ]

(d.4) Finally, compute the confusion matrix using this SVD-based classification method by following the same strat-
egy as Parts c.2 and c.3 above. Let’s name this confusion matrix test svd17 confusion. Print out this
matrix, and submit your results.

Problem 2: Let A ∈ Rm×n, W ∈ Rm×k, and H ∈ Rk×n. Suppose we know the values of entries of A and H , and
want to determine the values of entries of W by the least squares, i.e., find H that minimizes ‖A −WH‖2F .
Then, show that this minimization leads to the following version of the normal equation:

HHTW T = HAT.

2



Problem 3: Using MATLAB, do the following text mining experiments.

(a) Download the NIPS dataset from the following link:
http://www.math.ucdavis.edu/~saito/courses/167.s12/nips.mat . Then, load this file into your MATLAB session.
This file contains a term-document matrix A of size 12419 × 1500 as discussed in Lecture 22. Actual 12,419
terms are included in an array terms in that file. Suppose you want to retrieve the documents containing the
following three terms: ‘principal’, ‘component’, ‘analysis’. Construct the query vector q in MATLAB.

[Hint: Use strcmp function of MATLAB to get the position of each term you want to use in the query in the
array terms.]

(b) Now, compute the cosine similarities between this query vector q and each document (i.e., each column vector)
aj , j = 1 : 1500. Then, plot this cosine similarities and submit your plot. Also, compute the number of
retrieved documents by varying the tolerance tol = 0.05, 0.15, 0.25, 0.35. Report these four numbers retrieved.

(c) Compute the first 100 terms of SVD of A using MATLAB’s svds function by:

>> [U100, S100, V100] = svds(A, 100);

Then, compute the relative Frobenius error between A100 and A, and report the results.

(d) Instead of A, let’s use the rank 100 approximation of A. Without forming A100 explicitly, repeat Part (b) using
the cosine similarity formula discussed in the class, i.e.,

cos θj :=
qT
kj

‖q‖2‖j‖2
, qk:=U

T
kq.

(e) Instead of k = 100 in Parts (c) and (d), what happens if you use k = 50? Repeat these parts using the rank 50
approximation, and discuss the difference between k = 50 and k = 100.

3

http://www.math.ucdavis.edu/~saito/courses/167.s12/nips.mat

