MAT 167: Homework Assignment \#8 (due Wednesday, June 6)

First of all, do the following:

- Read Chapters 9, 10, \& 11.

Problem 1. Using MATLAB, do the following handwritten digit recognition experiments.
(a) Download the handwritten digit database from the following link:
http://www.math.ucdavis.edu/~saito/courses/167.s12/usps.mat. Then, load this file into your MATLAB session. This file contains 4 arrays: train_patterns, test_patterns of size 256×4649, and train_labels, test_labels of size 10×4649. The train_patterns and test_patterns contain a raster scan of the 16×16 gray level pixel intensities, which have been normalized to range within $[-1,1]$. The train_labels and test_labels variables contain the ground truth information of the digit images. That is, if the j th handwritten digit image in train_patterns truly represents digit i, then the $(i+1, j)$ th entry of train_labels is +1 , and all the other entries of the j th column of train_labels are -1 .
Now, display the first 16 images in train_patterns using subplot ($4,4, k$) and imagesc functions in MATLAB. Print out the figure and attach it to your hw8 submission.
[Hint: You need to reshape each column into a matrix of size 16×16 followed by transposing it in order to display it correctly.]
(b) Now, compute the mean digits in the train_patterns, put them in a matrix called train_aves of size 256×10, and display these 10 mean digit images using subplot $(2,5, k)$ and imagesc. Print out the figure and attach it to your hw8 submission.
[Hint: You can gather (or pool) all the images in train_patterns corresponding to digit $k-1(1 \leq k \leq 10)$ by the following:

```
>> train_patterns(:, train_labels(k,:)==1);
]
```

(c) Let's conduct the simplest classification experiments as follows:
(c.1) First, prepare a matrix called test_classif of size 10×4649 and fill this matrix by computing the Euclidean distance (or its square) between each image in the test_patterns and each mean digit image in train_patterns.
[Hint: the following line computes the squared Euclidean distances between all the test digit images and the k th mean digit of the training dataset by one line:

```
>> sum((test_patterns-repmat(train_aves(:,k),[1 4649])).^2);
```

]
(c.2) Then, compute the classification results by finding the position index of the minimum of each column of test_classif. Put the results in a vector test_classif_res of size 1×4649.
[Hint: You can find the position index giving the minimum of the j th column of test_classif by

```
>> [tmp, ind] = min(test_classif(:,j));
```

Then, the variable ind contains the position index (between 1 and 10) of the smallest entry of test_classif(:, j).]
(c.3) Finally, compute the confusion matrix test_confusion of size 10×10, print out this matrix, and submit your results.
[Hint: First gather the classification results corresponding to the k th digit by

```
>> tmp=test_classif_res(test_labels(k,:)==1);
```

This tmp array contains the results of your classification of the test digits whose true digit is $k-1(1 \leq k \leq 10)$. In other words, if your classification results were perfect, all the entries of tmp would be k. But in reality, this simplest classification algorithm makes mistakes, so tmp contains values other than k. You need to count how many entries have the value j in tmp, $j=1: 10$. That would give you the k th row of the test_confusion matrix.]
(d) Finally, let's conduct the SVD-based classification experiments.
(d.1) Pool all the images corresponding to the k th digit train_patterns, compute the rank 17 SVD of that set of images (i.e., the first 17 singular values and vectors), and put the left singular vectors (or the matrix U) of k th digit into the array train_u of size $256 \times 17 \times 10$. For $k=1: 10$, you can do the following:

```
>> [train_u(:,:,k),tmp,tmp2] = svds(train_patterns(:,train_labels(k,:)==1),17);
```

We do not need the singular values and right singular vectors in this experiment.
(d.2) Now, compute the expansion coefficients of each test digit image with respect to the 17 singular vectors of each train digit image set. In other words, you need to compute 17×10 numbers for each test digit image. Put the results in the 3D array test_svd17 of size $17 \times 4649 \times 10$. This can be done by

```
>> for k=1:10
    test_svd17(:,:,k) = train_u(:,:,k)' * test_patterns;
    end
```

(d.3) Next, compute the error between each original test digit image and its rank 17 approximation using the k th digit images in the training dataset. The idea of this classification is that if a test digit image should belong to class of k^{*} th digit if the corresponding rank 17 approximation is the best approximation (i.e., the smallest error) among 10 such approximations. (See my Lecture 21 for the details). Prepare a matrix test_svd17res of size 10×4649, and put those approximation errors into this matrix.
[Hint: The rank 17 approximation of test digits using the 17 left singular vectors of the k th digit training images can be computed by train_u(: , : , k) *test_svd17 (: , : , k) ;]
(d.4) Finally, compute the confusion matrix using this SVD-based classification method by following the same strategy as Parts c. 2 and c. 3 above. Let's name this confusion matrix test_svd17_confusion. Print out this matrix, and submit your results.

Problem 2: Let $A \in \mathbb{R}^{m \times n}$, $W \in \mathbb{R}^{m \times k}$, and $H \in \mathbb{R}^{k \times n}$. Suppose we know the values of entries of A and H, and want to determine the values of entries of W by the least squares, i.e., find H that minimizes $\|A-W H\|_{F}^{2}$. Then, show that this minimization leads to the following version of the normal equation:

$$
H H^{\top} W^{\top}=H A^{\top}
$$

Problem 3: Using MATLAB, do the following text mining experiments.
(a) Download the NIPS dataset from the following link:
http://www.math.ucdavis.edu/~saito/courses/167.s12/nips.mat. Then, load this file into your MATLAB session. This file contains a term-document matrix A of size 12419×1500 as discussed in Lecture 22. Actual 12,419 terms are included in an array terms in that file. Suppose you want to retrieve the documents containing the following three terms: 'principal', 'component', 'analysis'. Construct the query vector \boldsymbol{q} in MATLAB.
[Hint: Use strcmp function of MATLAB to get the position of each term you want to use in the query in the array terms.]
(b) Now, compute the cosine similarities between this query vector \boldsymbol{q} and each document (i.e., each column vector) $\boldsymbol{a}_{j}, j=1: 1500$. Then, plot this cosine similarities and submit your plot. Also, compute the number of retrieved documents by varying the tolerance $t o l=0.05,0.15,0.25,0.35$. Report these four numbers retrieved.
(c) Compute the first 100 terms of SVD of A using MATLAB's svds function by:

```
>> [U100, S100, V100] = svds(A, 100);
```

Then, compute the relative Frobenius error between A_{100} and A, and report the results.
(d) Instead of A, let's use the rank 100 approximation of A. Without forming A_{100} explicitly, repeat Part (b) using the cosine similarity formula discussed in the class, i.e.,

$$
\cos \theta_{j}:=\frac{\boldsymbol{q}_{k j}^{\top}}{\|\boldsymbol{q}\|_{2}\left\|_{j}\right\|_{2}}, \quad \boldsymbol{q}_{k}:=U_{k}^{\top} \boldsymbol{q} .
$$

(e) Instead of $k=100$ in Parts (c) and (d), what happens if you use $k=50$? Repeat these parts using the rank 50 approximation, and discuss the difference between $k=50$ and $k=100$.

