Recall the centered data matrix
\[\tilde{X} := [\tilde{X}_1, \ldots, \tilde{X}_n] \in \mathbb{R}^{d \times n} \]
\[\tilde{X}_j := X_j - \bar{X}, \quad \bar{X} := \frac{1}{n} \sum_{j=1}^{n} X_j, \]
and the sample covariance matrix
\[S := \frac{1}{n} \tilde{X} \tilde{X}^T \]

Then, PCA is nothing but the eigenvalue decomposition of \(S \)
\[S = \Phi \Lambda \Phi^T, \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d) \]
\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0. \]
\[\Phi := [\phi_1, \ldots, \phi_d] \in \mathbb{R}^{d \times d} \]

is an orthonormal matrix, and \(\{\phi_1, \ldots, \phi_d\} \)
form an ONB of \(\mathbb{R}^d \).
\[\phi_j^T \tilde{X} \]

is said to be the \(j \)th

principal components of \(\tilde{X} \).

These are nothing but the expansion coefficients of \(\tilde{X} \) w.r.t. the ONB vector \(\phi_j \).

If \(\tilde{X} \) forms a “cigar” shape,

then \(\phi_j^T \tilde{X} \) are the coordinate values of \(\tilde{X} \)

under the rotated axes.
• Hence viewing the given dataset under the principal axes \(\phi_1, \phi_2, \ldots \) provides us better interpretations of the data than viewing them under the original axes \(e_1, e_2, \ldots \).

• PCA is also often used as a tool to do dimension reduction and feature extraction by keeping only top \(k \) PCA coordinates where \(k \ll d \), i.e.,

\[
\Phi_k := [\phi_1, \ldots, \phi_k] \in \mathbb{R}^{d \times k}
\]

\(\mathbb{R}^d \ni \tilde{x}_j \mapsto \Phi_k^T \tilde{x}_j \in \mathbb{R}^k \)

\(\text{top k PCA coordinates of } \tilde{x}_j \).

Note that using these top \(k \) principal components, we can approximate the original data \(x_j \) by

\[
x_j \approx \bar{x} + \Phi_k \tilde{x}_j
\]

Of course the approximation gets better and better as \(k \) increases. In fact, if \(k = d \), then \(x_j \) is recovered exactly (within machine \(\varepsilon \)).
Now we'll face the problem when we compute the eigendecomposition of \(S = \Phi \Lambda \Phi^T \):

1. If \(d \) is large, we cannot compute this eigendecomposition because we cannot hold \(\Phi \in \mathbb{R}^{d \times d} \) in computer memory, and its computational cost is \(O(d^3) \), i.e., too expensive to compute.

2. Fortunately, we often do not need all \(d \) eigenvectors, most likely, only first \(k \) eigenvectors \(k \ll d \).

3. Moreover if \(d > n \), then \(\text{rank}(S) = n - 1 \) if \(x_j \)'s are linearly indep. So, after the first \(n-1 \) eigenvectors are useless!

\[
\hat{S} = \frac{1}{n} \hat{X} \hat{X}^T = \frac{1}{n} \left\{ \hat{x}_1 \hat{x}_1^T + \cdots + \hat{x}_n \hat{x}_n^T \right\}
\]

Why? \(\hat{S} = \frac{1}{n} \hat{X} \hat{X}^T = \frac{1}{n} \left\{ \hat{x}_1 \hat{x}_1^T + \cdots + \hat{x}_n \hat{x}_n^T \right\} \)

So looks like \(\text{rank}(S) = n \).

But since \(\sum \hat{x}_i = 0 \) because the mean \(\bar{x} \) is subtracted from each data vector \(x_j \) (i.e., \(\hat{x}_j = x_j - \bar{x} \))

Hence, \(S \) loses 1 rank. So, \(\text{rank}(S) = n - 1 \).
Now, let's consider the reduced SVD of \tilde{X}:

$$\tilde{X} = \hat{U} \hat{\Sigma} \hat{V}^T$$

For $d > n$, $\hat{\Sigma}$ is a diagonal matrix with positive entries on the diagonal. For $d < n$, $\hat{\Sigma}$ is a matrix of rank d.

Just consider the "neo-classical" setting, i.e., $d \geq n$ (e.g., the face image database).

Then consider the sample covariance matrix S using the above SVD:

$$S = \frac{1}{n} \tilde{X} \tilde{X}^T = \frac{1}{n} \hat{U} \hat{\Sigma} \hat{V}^T \hat{V} \Sigma^T \hat{U}^T$$

$$= \frac{1}{n} \hat{U} \Sigma \Sigma^T \hat{U}^T = \frac{1}{n} \hat{U} \Sigma^2 \hat{U}^T$$

Now $\hat{\Sigma} = \text{diag}(\sigma_1, \ldots, \sigma_{n-1}, 0)$ if X_1, \ldots, X_n are linearly independent.

So, $\hat{\Sigma}^2 = \text{diag}(\sigma_1^2, \ldots, \sigma_{n-1}^2, 0)$.

Finally, S can be written as

$$S = \hat{U} \left(\frac{1}{n} \hat{\Sigma}^2 \right) \hat{U}^T$$

$$\hat{\Sigma}^2 = \text{diag}(\sigma_1^2, \ldots, \sigma_{n-1}^2, 0)$$

columns are orthonormal.

Comparing this with the eigendecomposition.
\[S = \Phi \Lambda \Phi^T, \text{ we can conclude that} \]
\[
\begin{align*}
\Phi(:, 1:n) &= \hat{U} \\
\Lambda(1:n, 1:n) &= \frac{1}{n} \hat{\Sigma}^2 = \text{diag}(\sigma^2_1, \ldots, \sigma^2_{n-1}, 0)
\end{align*}
\]

In fact, only the 1: n-1 portion is useful since \(\sigma_n = 0 \).

Hence, we should use the reduced SVD of \(\tilde{X} \) (not \(S \)) for computing PCA!!

Do not use the eigendecomposition of \(S \) unless \(d \) is small.

\textbf{Note:} \(\tilde{X} V = \hat{U} \hat{\Sigma} V^T V = \hat{U} \hat{\Sigma} \]
\[
= [\sigma_1 u_1, \ldots, \sigma_{n-1} u_{n-1}, 0]
\]
\[
= [\tilde{X} v_1, \ldots, \tilde{X} v_n]
\]

So, \(u_j = \frac{1}{\sigma_j} \tilde{X} v_j, \quad j = 1, \ldots, n-1. \)

In other words, each principal axis \(u_j \) is just a linear combination of the (centered) input vectors \(\tilde{X}_1, \ldots, \tilde{X}_n \)!

Now let's do MATLAB experiments using the face image database consisting of 143 faces each of which has \(128 \times 128 = 16384 \) pixels, i.e., \(d = 16384, \ n = 143 \).