
MAT 167: Applied Linear Algebra
Lecture 22: Text Mining

Naoki Saito

Department of Mathematics
University of California, Davis

May 19 & 22, 2017

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 1 / 21



Outline

1 Introduction

2 Preprocessing the Documents and Queries

3 The Vector Space Model

4 Latent Semantic Indexing

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 2 / 21



Introduction

Outline

1 Introduction

2 Preprocessing the Documents and Queries

3 The Vector Space Model

4 Latent Semantic Indexing

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 3 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

What Is Text Mining?

Text mining = Methods for extracting useful information from large
and often unstructured collections of texts.
It is also closely related to “information retrieval.”
In this context, keywords that carry information about the contents of
a document are called terms.
A list of all the terms in a document is called an index.
For each term, a list of all the documents that contain that particular
term is called an inverted index.
A typical application is to search databases of scientific papers for
given query terms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 4 / 21



Introduction

Because of Lecture 2 and HW #1, you should already be familiar with
the concept of term-document matrix.
Each column represents a document while each row represents a term.
The ijth entry of such a matrix normally represents the frequency of
occurrence of term i in document j .
In reality, the size of such matrices are huge (' 105×106).
However, fortunately, most of the times, they are quite sparse.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 5 / 21



Introduction

Because of Lecture 2 and HW #1, you should already be familiar with
the concept of term-document matrix.
Each column represents a document while each row represents a term.
The ijth entry of such a matrix normally represents the frequency of
occurrence of term i in document j .
In reality, the size of such matrices are huge (' 105×106).
However, fortunately, most of the times, they are quite sparse.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 5 / 21



Introduction

Because of Lecture 2 and HW #1, you should already be familiar with
the concept of term-document matrix.
Each column represents a document while each row represents a term.
The ijth entry of such a matrix normally represents the frequency of
occurrence of term i in document j .
In reality, the size of such matrices are huge (' 105×106).
However, fortunately, most of the times, they are quite sparse.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 5 / 21



Introduction

Because of Lecture 2 and HW #1, you should already be familiar with
the concept of term-document matrix.
Each column represents a document while each row represents a term.
The ijth entry of such a matrix normally represents the frequency of
occurrence of term i in document j .
In reality, the size of such matrices are huge (' 105×106).
However, fortunately, most of the times, they are quite sparse.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 5 / 21



Introduction

Because of Lecture 2 and HW #1, you should already be familiar with
the concept of term-document matrix.
Each column represents a document while each row represents a term.
The ijth entry of such a matrix normally represents the frequency of
occurrence of term i in document j .
In reality, the size of such matrices are huge (' 105×106).
However, fortunately, most of the times, they are quite sparse.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 5 / 21



Introduction

The NIPS Dataset

In this lecture, we will use the following ’Bags of Words’ dataset
available from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words .
This is a collection of 1500 (= n) articles (mostly in the field of
machine learning and computational neuroscience) published in the
proceedings of Conference on Neural Information Processing Systems
(NIPS) over certain periods.
The total number of terms (words) examined for these articles is
12419 (=m).
More precisely, after tokenization (i.e., breaking a stream of text up
into words, phrases, symbols, or other meaningful elements called
tokens), and removal of stop words (i.e., common words that do not
give useful info; more about these in the next section), the vocabulary
of unique words was truncated by only keeping words that occurred
more than ten times.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 6 / 21



Introduction

The NIPS Dataset

In this lecture, we will use the following ’Bags of Words’ dataset
available from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words .
This is a collection of 1500 (= n) articles (mostly in the field of
machine learning and computational neuroscience) published in the
proceedings of Conference on Neural Information Processing Systems
(NIPS) over certain periods.
The total number of terms (words) examined for these articles is
12419 (=m).
More precisely, after tokenization (i.e., breaking a stream of text up
into words, phrases, symbols, or other meaningful elements called
tokens), and removal of stop words (i.e., common words that do not
give useful info; more about these in the next section), the vocabulary
of unique words was truncated by only keeping words that occurred
more than ten times.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 6 / 21



Introduction

The NIPS Dataset

In this lecture, we will use the following ’Bags of Words’ dataset
available from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words .
This is a collection of 1500 (= n) articles (mostly in the field of
machine learning and computational neuroscience) published in the
proceedings of Conference on Neural Information Processing Systems
(NIPS) over certain periods.
The total number of terms (words) examined for these articles is
12419 (=m).
More precisely, after tokenization (i.e., breaking a stream of text up
into words, phrases, symbols, or other meaningful elements called
tokens), and removal of stop words (i.e., common words that do not
give useful info; more about these in the next section), the vocabulary
of unique words was truncated by only keeping words that occurred
more than ten times.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 6 / 21



Introduction

The NIPS Dataset

In this lecture, we will use the following ’Bags of Words’ dataset
available from the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words .
This is a collection of 1500 (= n) articles (mostly in the field of
machine learning and computational neuroscience) published in the
proceedings of Conference on Neural Information Processing Systems
(NIPS) over certain periods.
The total number of terms (words) examined for these articles is
12419 (=m).
More precisely, after tokenization (i.e., breaking a stream of text up
into words, phrases, symbols, or other meaningful elements called
tokens), and removal of stop words (i.e., common words that do not
give useful info; more about these in the next section), the vocabulary
of unique words was truncated by only keeping words that occurred
more than ten times.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 6 / 21



Introduction

First 10 words sorted in the alphabetical order: ‘a2i’, ‘aaa’, ‘aaai’,
‘aapo’, ‘aat’, ‘aazhang’, ‘abandonment’, ‘abbott’, ‘abbreviated’,
‘abcde’.
10 most frequently used words: ‘network’, ‘model’, ‘learning’,
‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’, ‘system’, ‘data’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 7 / 21



Introduction

First 10 words sorted in the alphabetical order: ‘a2i’, ‘aaa’, ‘aaai’,
‘aapo’, ‘aat’, ‘aazhang’, ‘abandonment’, ‘abbott’, ‘abbreviated’,
‘abcde’.
10 most frequently used words: ‘network’, ‘model’, ‘learning’,
‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’, ‘system’, ‘data’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 7 / 21



Preprocessing the Documents and Queries

Outline

1 Introduction

2 Preprocessing the Documents and Queries

3 The Vector Space Model

4 Latent Semantic Indexing

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 8 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



Preprocessing the Documents and Queries

Preprocessing the Documents and Queries

Before the index (a list of terms contained in a given document) is
made, we need to do the following two preprocessing steps:

1 Elimination of stop words
2 Stemming

Stop words are words that can be found in virtually any document
(i.e., most likely useless words to characterize the documents), e.g.,
‘a’, ‘able’, ‘about’, ‘above’, ‘according’, ‘accordingly’, ‘across’,
‘actually’, ‘after’, . . .
Stemming is the process of reducing each word that is conjugated or
has a suffix to its stem. For example, ‘fishing’, ‘fished’, ‘fish’, ‘fisher’
stemming=⇒ ‘fish’ (the root word).
There are some public domain stemming software systems; see
‘Stemming’ page in Wikipedia.
Note that stemming was not performed in the NIPS dataset, e.g., the
terms include ‘model’, ‘modeled’, ‘modeling’, ‘modelled’, ‘modelling’.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 9 / 21



The Vector Space Model

Outline

1 Introduction

2 Preprocessing the Documents and Queries

3 The Vector Space Model

4 Latent Semantic Indexing

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 10 / 21



The Vector Space Model

The Vector Space Model

The main idea of this model is to create a term-document matrix, say,
A= (aij ) ∈Rm×n, where each document is represented by a column vector aj
that has nonzero entries in the position that correspond to terms found in
that document.

Consequently, each row represents a term and has nonzero entries in those
positions that correspond to the documents where that term can be found,
i.e., the inverted index.

In practice, a text parser (a program) is used to create term-document
matrices, and does stemming and stop words removal too.

The entry aij is normally set to the term frequency fij , i.e., the number of
times term i appears in document j .

Can have weights, e.g., aij = fij log(n/ni ) where ni is the number of
documents that contain term i . If term i occurs frequently in only a few
documents, then the log factor becomes significant. On the other hand, if
term i occurs many documents, the log factor makes aij ≈ 0, i.e., term i is
not useful. Stop words removal mitigates this to some extent.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 11 / 21



The Vector Space Model

The Vector Space Model

The main idea of this model is to create a term-document matrix, say,
A= (aij ) ∈Rm×n, where each document is represented by a column vector aj
that has nonzero entries in the position that correspond to terms found in
that document.

Consequently, each row represents a term and has nonzero entries in those
positions that correspond to the documents where that term can be found,
i.e., the inverted index.

In practice, a text parser (a program) is used to create term-document
matrices, and does stemming and stop words removal too.

The entry aij is normally set to the term frequency fij , i.e., the number of
times term i appears in document j .

Can have weights, e.g., aij = fij log(n/ni ) where ni is the number of
documents that contain term i . If term i occurs frequently in only a few
documents, then the log factor becomes significant. On the other hand, if
term i occurs many documents, the log factor makes aij ≈ 0, i.e., term i is
not useful. Stop words removal mitigates this to some extent.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 11 / 21



The Vector Space Model

The Vector Space Model

The main idea of this model is to create a term-document matrix, say,
A= (aij ) ∈Rm×n, where each document is represented by a column vector aj
that has nonzero entries in the position that correspond to terms found in
that document.

Consequently, each row represents a term and has nonzero entries in those
positions that correspond to the documents where that term can be found,
i.e., the inverted index.

In practice, a text parser (a program) is used to create term-document
matrices, and does stemming and stop words removal too.

The entry aij is normally set to the term frequency fij , i.e., the number of
times term i appears in document j .

Can have weights, e.g., aij = fij log(n/ni ) where ni is the number of
documents that contain term i . If term i occurs frequently in only a few
documents, then the log factor becomes significant. On the other hand, if
term i occurs many documents, the log factor makes aij ≈ 0, i.e., term i is
not useful. Stop words removal mitigates this to some extent.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 11 / 21



The Vector Space Model

The Vector Space Model

The main idea of this model is to create a term-document matrix, say,
A= (aij ) ∈Rm×n, where each document is represented by a column vector aj
that has nonzero entries in the position that correspond to terms found in
that document.

Consequently, each row represents a term and has nonzero entries in those
positions that correspond to the documents where that term can be found,
i.e., the inverted index.

In practice, a text parser (a program) is used to create term-document
matrices, and does stemming and stop words removal too.

The entry aij is normally set to the term frequency fij , i.e., the number of
times term i appears in document j .

Can have weights, e.g., aij = fij log(n/ni ) where ni is the number of
documents that contain term i . If term i occurs frequently in only a few
documents, then the log factor becomes significant. On the other hand, if
term i occurs many documents, the log factor makes aij ≈ 0, i.e., term i is
not useful. Stop words removal mitigates this to some extent.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 11 / 21



The Vector Space Model

The Vector Space Model

The main idea of this model is to create a term-document matrix, say,
A= (aij ) ∈Rm×n, where each document is represented by a column vector aj
that has nonzero entries in the position that correspond to terms found in
that document.

Consequently, each row represents a term and has nonzero entries in those
positions that correspond to the documents where that term can be found,
i.e., the inverted index.

In practice, a text parser (a program) is used to create term-document
matrices, and does stemming and stop words removal too.

The entry aij is normally set to the term frequency fij , i.e., the number of
times term i appears in document j .

Can have weights, e.g., aij = fij log(n/ni ) where ni is the number of
documents that contain term i . If term i occurs frequently in only a few
documents, then the log factor becomes significant. On the other hand, if
term i occurs many documents, the log factor makes aij ≈ 0, i.e., term i is
not useful. Stop words removal mitigates this to some extent.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 11 / 21



The Vector Space Model

Usually, the term-document matrix is sparse. For example, in the NIPS
dataset, the number of nonzero entries in the term-document matrix of size
12419×1500 is 746,316, which is only 4% of the whole matrix entries.

Figure: The first 1000 rows of the NIPS term-document matrix. Each dot
represents a nonzero entry.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 12 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

Query Matching

Query matching = a process of finding the relevant documents for a
given query vector q ∈Rm.
We must define a distance or similarity between q and each document
aj ∈Rm, j = 1 : n.
Often the following cosine distance (in fact, it would be better to say
similarity rather than distance) is used:

cos(θ(q,aj))=
qTaj

‖q‖2‖aj‖2
.

If θ(q,aj) is small enough, then aj is deemed relevant.
More precisely, we set some predefined tolerance and if
cos(θ(q,aj))> tol, then aj is deemed relevant.
The smaller the value of tol is, the more documents are retrieved and
considered as relevant even if many of them are not really relevant.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 13 / 21



The Vector Space Model

A Query Matching Example

Let’s consider the NIPS dataset and set up
q ∈R12419 = e3528+e6700+e6932, i.e., only three nonzero entries that
correspond to the three terms, ‘entropy’, ‘minimum’, ‘maximum’.
Compute cos(θ(q,aj)), j = 1 : 1500.

Figure: tol=0.2, 0.1, 0.05 correspond to 4, 15, 89 returned documents.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 14 / 21



The Vector Space Model

A Query Matching Example

Let’s consider the NIPS dataset and set up
q ∈R12419 = e3528+e6700+e6932, i.e., only three nonzero entries that
correspond to the three terms, ‘entropy’, ‘minimum’, ‘maximum’.
Compute cos(θ(q,aj)), j = 1 : 1500.

Figure: tol=0.2, 0.1, 0.05 correspond to 4, 15, 89 returned documents.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 14 / 21



The Vector Space Model

A Query Matching Example

Let’s consider the NIPS dataset and set up
q ∈R12419 = e3528+e6700+e6932, i.e., only three nonzero entries that
correspond to the three terms, ‘entropy’, ‘minimum’, ‘maximum’.
Compute cos(θ(q,aj)), j = 1 : 1500.

Figure: tol=0.2, 0.1, 0.05 correspond to 4, 15, 89 returned documents.
saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 14 / 21



The Vector Space Model

Performance Modeling

Let us define the following quantities:

Precision: P := Dr

Dt
;

Recall: R := Dr

Nr
,

where Dr ,Dt ,Nr are the number of relevant documents retrieved, the
total number of documents retrieved, and the total number of relevant
documents in the database, respectively.
If we set tol large in the cosine similarity measure, then we expect to
have high P but low R .
On the other hand, if we set tol small, the situation is the other way
around.
Unfortunately, in the NIPS dataset, there is no information on the
documents except those terms used in them. Hence, we cannot really
compute “the Recall vs Precision plot” like those in the textbook.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 15 / 21



The Vector Space Model

Performance Modeling

Let us define the following quantities:

Precision: P := Dr

Dt
;

Recall: R := Dr

Nr
,

where Dr ,Dt ,Nr are the number of relevant documents retrieved, the
total number of documents retrieved, and the total number of relevant
documents in the database, respectively.
If we set tol large in the cosine similarity measure, then we expect to
have high P but low R .
On the other hand, if we set tol small, the situation is the other way
around.
Unfortunately, in the NIPS dataset, there is no information on the
documents except those terms used in them. Hence, we cannot really
compute “the Recall vs Precision plot” like those in the textbook.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 15 / 21



The Vector Space Model

Performance Modeling

Let us define the following quantities:

Precision: P := Dr

Dt
;

Recall: R := Dr

Nr
,

where Dr ,Dt ,Nr are the number of relevant documents retrieved, the
total number of documents retrieved, and the total number of relevant
documents in the database, respectively.
If we set tol large in the cosine similarity measure, then we expect to
have high P but low R .
On the other hand, if we set tol small, the situation is the other way
around.
Unfortunately, in the NIPS dataset, there is no information on the
documents except those terms used in them. Hence, we cannot really
compute “the Recall vs Precision plot” like those in the textbook.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 15 / 21



The Vector Space Model

Performance Modeling

Let us define the following quantities:

Precision: P := Dr

Dt
;

Recall: R := Dr

Nr
,

where Dr ,Dt ,Nr are the number of relevant documents retrieved, the
total number of documents retrieved, and the total number of relevant
documents in the database, respectively.
If we set tol large in the cosine similarity measure, then we expect to
have high P but low R .
On the other hand, if we set tol small, the situation is the other way
around.
Unfortunately, in the NIPS dataset, there is no information on the
documents except those terms used in them. Hence, we cannot really
compute “the Recall vs Precision plot” like those in the textbook.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 15 / 21



Latent Semantic Indexing

Outline

1 Introduction

2 Preprocessing the Documents and Queries

3 The Vector Space Model

4 Latent Semantic Indexing

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 16 / 21



Latent Semantic Indexing

Latent Semantic Indexing (LSI)

Is an indexing and retrieval method that uses SVD to identify patterns
in the relationships between the terms and documents.
Is based on the principle that words that are used in the same contexts
tend to have similar meanings.
A key feature of LSI: its ability to extract the conceptual content of a
body of text by establishing associations between those terms that
occur in similar contexts.
Could trace back its history to factor analysis applications in mid
1960s, but it started gaining the popularity in late 80s to early 90s.
Nowadays, LSI is being used in many applications on a daily basis.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 17 / 21



Latent Semantic Indexing

Latent Semantic Indexing (LSI)

Is an indexing and retrieval method that uses SVD to identify patterns
in the relationships between the terms and documents.
Is based on the principle that words that are used in the same contexts
tend to have similar meanings.
A key feature of LSI: its ability to extract the conceptual content of a
body of text by establishing associations between those terms that
occur in similar contexts.
Could trace back its history to factor analysis applications in mid
1960s, but it started gaining the popularity in late 80s to early 90s.
Nowadays, LSI is being used in many applications on a daily basis.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 17 / 21



Latent Semantic Indexing

Latent Semantic Indexing (LSI)

Is an indexing and retrieval method that uses SVD to identify patterns
in the relationships between the terms and documents.
Is based on the principle that words that are used in the same contexts
tend to have similar meanings.
A key feature of LSI: its ability to extract the conceptual content of a
body of text by establishing associations between those terms that
occur in similar contexts.
Could trace back its history to factor analysis applications in mid
1960s, but it started gaining the popularity in late 80s to early 90s.
Nowadays, LSI is being used in many applications on a daily basis.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 17 / 21



Latent Semantic Indexing

Latent Semantic Indexing (LSI)

Is an indexing and retrieval method that uses SVD to identify patterns
in the relationships between the terms and documents.
Is based on the principle that words that are used in the same contexts
tend to have similar meanings.
A key feature of LSI: its ability to extract the conceptual content of a
body of text by establishing associations between those terms that
occur in similar contexts.
Could trace back its history to factor analysis applications in mid
1960s, but it started gaining the popularity in late 80s to early 90s.
Nowadays, LSI is being used in many applications on a daily basis.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 17 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Let A ∈Rm×n be a term-document matrix, and let Ak :=UkΣkV
T
k be

the rank k approximation of A using the first k singular values and
singular vectors. Let Hk :=ΣkV T

k , i.e., Ak =UkHk .
For an appropriate value of k , A≈Ak . Hence, we have aj ≈Ukhj

where aj and hj are the jth column vectors of A and Hk , respectively.
This means that hj are the expansion coefficients of the best k-term
approximation to aj w.r.t. the ONB vectors {u1, . . . ,uk }.
Previously, for a given query vector q, in order to compute the cosine
similarities between q and aj , j = 1 : n, we had to compute qTA
followed by the normalization by ‖q‖2 and ‖aj‖.
Now, let’s replace A by its best k-term approximation Ak , i.e., we
compute: qTAk = qTUkHk = (UT

k q)THk .
Hence, we can simplify the cosine similarity computation as follows:

cosθj :=
qT
khj

‖q‖2‖hj‖2
, qk :=UT

k q.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 18 / 21



Latent Semantic Indexing

Note that there is a typo in the textbook Eqn.(11.4). The formula in
the previous page of this slide is correct. In the textbook formula, the
author normalized it by ‖qk‖2 instead of ‖q‖2. You can show that
‖qk‖2 6= ‖q‖2.
The reason why we formed Hk and qk is that there is no need to
explicitly compute and store Ak once we have Hk and qk . Directly
dealing with Ak by computing and storing it is wasteful and
time-consuming particularly for a large A.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 19 / 21



Latent Semantic Indexing

Note that there is a typo in the textbook Eqn.(11.4). The formula in
the previous page of this slide is correct. In the textbook formula, the
author normalized it by ‖qk‖2 instead of ‖q‖2. You can show that
‖qk‖2 6= ‖q‖2.
The reason why we formed Hk and qk is that there is no need to
explicitly compute and store Ak once we have Hk and qk . Directly
dealing with Ak by computing and storing it is wasteful and
time-consuming particularly for a large A.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 19 / 21



Latent Semantic Indexing

An LSI Query Example
Let’s use the NIPS dataset with k = 100.
Then, the relative error of A100 and A in terms of the Frobenius norm,
i.e., ‖A−A100‖F/‖A‖F was 0.6074, which is still large.
Nonetheless, we get the relatively good performance.

Figure: With the best 100 term approximation, tol=0.2, 0.1, 0.05 correspond to
0, 4, 72 returned documents; Compare with the no approximation case: 4, 15, 89.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 20 / 21



Latent Semantic Indexing

An LSI Query Example
Let’s use the NIPS dataset with k = 100.
Then, the relative error of A100 and A in terms of the Frobenius norm,
i.e., ‖A−A100‖F/‖A‖F was 0.6074, which is still large.
Nonetheless, we get the relatively good performance.

Figure: With the best 100 term approximation, tol=0.2, 0.1, 0.05 correspond to
0, 4, 72 returned documents; Compare with the no approximation case: 4, 15, 89.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 20 / 21



Latent Semantic Indexing

An LSI Query Example
Let’s use the NIPS dataset with k = 100.
Then, the relative error of A100 and A in terms of the Frobenius norm,
i.e., ‖A−A100‖F/‖A‖F was 0.6074, which is still large.
Nonetheless, we get the relatively good performance.

Figure: With the best 100 term approximation, tol=0.2, 0.1, 0.05 correspond to
0, 4, 72 returned documents; Compare with the no approximation case: 4, 15, 89.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 20 / 21



Latent Semantic Indexing

An LSI Query Example
Let’s use the NIPS dataset with k = 100.
Then, the relative error of A100 and A in terms of the Frobenius norm,
i.e., ‖A−A100‖F/‖A‖F was 0.6074, which is still large.
Nonetheless, we get the relatively good performance.

Figure: With the best 100 term approximation, tol=0.2, 0.1, 0.05 correspond to
0, 4, 72 returned documents; Compare with the no approximation case: 4, 15, 89.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 20 / 21



Latent Semantic Indexing

We know that the vector u1 is the most dominant basis vector
representing the range of the term space (i.e., the column space of A).
Hence it is of our interest to check what terms u1 represents (note
that the entries of u1 are nonnegative for this matrix). The 10 terms
corresponding to the largest entries of u1: ‘network’, ‘model’,
‘learning’, ‘input’, ‘function’, ‘neural’, ‘set’, ‘training’, ‘data’, ‘unit’.
Compare these with the top 10 frequently used terms: ‘network’,
‘model’, ‘learning’, ‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’,
‘system’, ‘data’. As you can see, they are very close.
Let’s check the entries of u2, which contains both positive and
negative values. The top 5 positive entries of u2: ‘network’, ‘unit’,
‘input’, ‘neural’, ‘output’, while the top 5 negative entries of u2:
‘model’, ‘data’, ‘algorithm’, ‘learning’, ‘parameter’.
My interpretation: u2 tries to differentiate articles related to
neuroscience from those related to machine learning algorithms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 21 / 21



Latent Semantic Indexing

We know that the vector u1 is the most dominant basis vector
representing the range of the term space (i.e., the column space of A).
Hence it is of our interest to check what terms u1 represents (note
that the entries of u1 are nonnegative for this matrix). The 10 terms
corresponding to the largest entries of u1: ‘network’, ‘model’,
‘learning’, ‘input’, ‘function’, ‘neural’, ‘set’, ‘training’, ‘data’, ‘unit’.
Compare these with the top 10 frequently used terms: ‘network’,
‘model’, ‘learning’, ‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’,
‘system’, ‘data’. As you can see, they are very close.
Let’s check the entries of u2, which contains both positive and
negative values. The top 5 positive entries of u2: ‘network’, ‘unit’,
‘input’, ‘neural’, ‘output’, while the top 5 negative entries of u2:
‘model’, ‘data’, ‘algorithm’, ‘learning’, ‘parameter’.
My interpretation: u2 tries to differentiate articles related to
neuroscience from those related to machine learning algorithms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 21 / 21



Latent Semantic Indexing

We know that the vector u1 is the most dominant basis vector
representing the range of the term space (i.e., the column space of A).
Hence it is of our interest to check what terms u1 represents (note
that the entries of u1 are nonnegative for this matrix). The 10 terms
corresponding to the largest entries of u1: ‘network’, ‘model’,
‘learning’, ‘input’, ‘function’, ‘neural’, ‘set’, ‘training’, ‘data’, ‘unit’.
Compare these with the top 10 frequently used terms: ‘network’,
‘model’, ‘learning’, ‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’,
‘system’, ‘data’. As you can see, they are very close.
Let’s check the entries of u2, which contains both positive and
negative values. The top 5 positive entries of u2: ‘network’, ‘unit’,
‘input’, ‘neural’, ‘output’, while the top 5 negative entries of u2:
‘model’, ‘data’, ‘algorithm’, ‘learning’, ‘parameter’.
My interpretation: u2 tries to differentiate articles related to
neuroscience from those related to machine learning algorithms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 21 / 21



Latent Semantic Indexing

We know that the vector u1 is the most dominant basis vector
representing the range of the term space (i.e., the column space of A).
Hence it is of our interest to check what terms u1 represents (note
that the entries of u1 are nonnegative for this matrix). The 10 terms
corresponding to the largest entries of u1: ‘network’, ‘model’,
‘learning’, ‘input’, ‘function’, ‘neural’, ‘set’, ‘training’, ‘data’, ‘unit’.
Compare these with the top 10 frequently used terms: ‘network’,
‘model’, ‘learning’, ‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’,
‘system’, ‘data’. As you can see, they are very close.
Let’s check the entries of u2, which contains both positive and
negative values. The top 5 positive entries of u2: ‘network’, ‘unit’,
‘input’, ‘neural’, ‘output’, while the top 5 negative entries of u2:
‘model’, ‘data’, ‘algorithm’, ‘learning’, ‘parameter’.
My interpretation: u2 tries to differentiate articles related to
neuroscience from those related to machine learning algorithms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 21 / 21



Latent Semantic Indexing

We know that the vector u1 is the most dominant basis vector
representing the range of the term space (i.e., the column space of A).
Hence it is of our interest to check what terms u1 represents (note
that the entries of u1 are nonnegative for this matrix). The 10 terms
corresponding to the largest entries of u1: ‘network’, ‘model’,
‘learning’, ‘input’, ‘function’, ‘neural’, ‘set’, ‘training’, ‘data’, ‘unit’.
Compare these with the top 10 frequently used terms: ‘network’,
‘model’, ‘learning’, ‘function’, ‘input’, ‘neural’, ‘set’, ‘algorithm’,
‘system’, ‘data’. As you can see, they are very close.
Let’s check the entries of u2, which contains both positive and
negative values. The top 5 positive entries of u2: ‘network’, ‘unit’,
‘input’, ‘neural’, ‘output’, while the top 5 negative entries of u2:
‘model’, ‘data’, ‘algorithm’, ‘learning’, ‘parameter’.
My interpretation: u2 tries to differentiate articles related to
neuroscience from those related to machine learning algorithms.

saito@math.ucdavis.edu (UC Davis) Text Mining May 19 & 22, 2017 21 / 21


	Introduction
	Preprocessing the Documents and Queries
	The Vector Space Model
	Latent Semantic Indexing

