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Introduction

Introduction

The most dramatic change in search engine design in the past 15 years
or so: incorporation of the Web’s hyperlink structure (recall outlinks
and inlinks of webpages briefly discussed in Example 4 in Lecture 2).
Recall LSI (Latent Semantic Indexing), which uses the SVD of a
matrix (e.g., a term-document matrix). One cannot use LSI for the
entire Web: because it’s based on SVD, the computation and storage
for the entire Web is simply not tractable! (Currently, there are about
m≈ 4.49×109 webpages worldwide).
The idea of using link structure of the Web is the following:

1 ∃ certain webpages recognized as “go to” places for certain information
(called authorities);

2 ∃ certain webpages legitimizing those esteemed positions (i.e.,
authorities) by pointing to them with links (called hubs).

3 It is a mutually reinforcing approach: good hubs ⇐⇒ good authorities
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Introduction

In this lecture and the next, we will discuss two web search algorithms
based on link structure (or hyperlinks):

1 the HITS (Hyperlink Induced Topic Search) algorithm due to Jon
Kleinberg (1998).

2 the PageRank algorithm of Google (Sergey Brin & Larry Page, 1998)

Today’s lecture, we will focus on the HITS algorithm.

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 5 / 22



Introduction

In this lecture and the next, we will discuss two web search algorithms
based on link structure (or hyperlinks):

1 the HITS (Hyperlink Induced Topic Search) algorithm due to Jon
Kleinberg (1998).

2 the PageRank algorithm of Google (Sergey Brin & Larry Page, 1998)

Today’s lecture, we will focus on the HITS algorithm.

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 5 / 22



Introduction

In this lecture and the next, we will discuss two web search algorithms
based on link structure (or hyperlinks):

1 the HITS (Hyperlink Induced Topic Search) algorithm due to Jon
Kleinberg (1998).

2 the PageRank algorithm of Google (Sergey Brin & Larry Page, 1998)

Today’s lecture, we will focus on the HITS algorithm.

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 5 / 22



Introduction

In this lecture and the next, we will discuss two web search algorithms
based on link structure (or hyperlinks):

1 the HITS (Hyperlink Induced Topic Search) algorithm due to Jon
Kleinberg (1998).

2 the PageRank algorithm of Google (Sergey Brin & Larry Page, 1998)

Today’s lecture, we will focus on the HITS algorithm.

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 5 / 22



HITS Method

Outline

1 Introduction

2 HITS Method

3 A Small Scale Example

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 6 / 22



HITS Method

HITS Method

Recall: good hubs ⇐⇒ good authorities
Suppose webpage i has an authority score ai and hub score hi where
i = 1 : n.
Let E denote the set of all directed edges in a graph of the Web
whereby eij represents the directed edge from node (or webpage) i to
node j (meaning that webpage i has a link pointing to webpage j).
Assume that initial authority and hub scores of webpage i are a

(0)
i and

h
(0)
i .

The HITS method iteratively updates those scores by the following
summations:

a
(k)
i = ∑

j

h
(k−1)
j where eji ∈ E ; (1)

h
(k)
i = ∑

j

a
(k)
j where eij ∈ E , (2)

for k = 1,2, . . .
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HITS Method

The above equations can be recast in matrix notation using the
so-called adjacency matrix L= (Lij) of the directed web graph where

Lij =
{
1 if ∃i , j s.t. eij ∈ E ;
0 otherwise.

For example, consider the following directed web graph of Example 4
in Lecture 2:

1 2 3

4 5 6

e12

e21

e14 e15

e23

e25 e36 e63
e53

e54 e56

e65
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HITS Method

The adjacency matrix L of this web graph is:

L=



0 1 0 1 1 0
1 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1 1 0 1
0 0 1 0 1 0


Now, Eqn’s (1) and (2) can be rewritten as the matrix-vector multiplications:

a(k) = LTh(k−1), h(k) = La(k), (3)

where a(k),h(k) ∈Rn represent the authority and hub scores of n webpages under
consideration, respectively.

Hence, we have:
a(k) = LTLa(k−1), h(k) = LLTh(k−1). (4)

Eqn’s (4) are essentially the so-called power iteration for computing the dominant
eigenvector of LTL and LLT.

In above the HITS algorithm (3) (as well as (4)), we must normalize these vector
after each iteration to have ‖a(k)‖ = 1 and ‖h(k)‖ = 1. The most convenient norm
is 1-norm in this case.
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HITS Method

Power Iteration

is also known as power method
is an eigenvalue algorithm: given a matrix A, it will produce the
largest eigenvalue λmax of A, the corresponding eigenvector v
is a very simple algorithm, but it may converge slowly.
does not compute a matrix decomposition (e.g., QR, SVD, . . . ).
hence can be used when A is a very large sparse matrix.

Algorithm: Power Iteration

v (0) = some vector with ‖v (0)‖ = 1
for k = 1,2, . . .

w =Av (k−1) apply A
v (k) =w/‖w‖ normalize

λ(k) =
(
v (k)

)T
Av (k) Rayleigh quotient
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HITS Method

Power Iteration: Why?
Let q1, . . . ,qn be the ONB vectors consisting of the eigenvectors of A
Write v (0) as a linear combination of {q j }j=1:n as

v (0) =α1q1+α2q2+·· ·+αnqn

Since v (k) is a constant (say, ck) multiple of Akv (0), we have

v (k) = ckA
kv (0)

= ck
(
α1A

kq1+α2A
kq2+·· ·+αnA

kqn

)
= ck

(
α1λ

k
1q1+α2λ

k
2q2+·· ·+αnλ

k
nqn

)
= ckλ

k
1

(
α1q1+α2

(
λ2

λ1

)k
q2+·· ·+αn

(
λn

λ1

)k
qn

)
Note that |λ1| > |λ2| ≥ · · · ≥ |λn| ≥ 0; hence, for j = 2 : n, (λj/λ1)

k → 0
as k →∞.
Since ck is chosen such that ‖v (k)‖ = 1, we have v (k) → q1 and
λ(k) → qT

1Aq1 =λ1 as k →∞.
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A Small Scale Example

Example 4 of Lecture 2

Recall the adjacency matrix L:

L=



0 1 0 1 1 0
1 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1 1 0 1
0 0 1 0 1 0


Hence, we have:

LTL=



1 0 1 0 1 0
0 1 0 1 1 0
1 0 3 1 2 1
0 1 1 2 1 1
1 1 2 1 3 0
0 0 1 1 0 2

 LLT =



3 1 0 0 1 1
1 3 0 0 1 2
0 0 1 0 1 0
0 0 0 0 0 0
1 1 1 0 3 1
1 2 0 0 1 2


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A Small Scale Example

Now, the eigenvectors corresponding to the largest eigenvalues for
these two matrices are as follows (using MATLAB eig function):

q1(L
TL) = (0.226000,0.182068,0.606615,0.372375,0.598376,0.226000)T

q1(LL
T) = (0.458139,0.568687,0.0898142,0.00000,0.478872,0.478872)T

Hence, using a simple tie-breaking strategy, we have:

Authority Ranking = (3,5,4,1,6,2);
Hub Ranking = (2,5,6,1,3,4).

which are quite reasonable. Recall the web graph:

1 2 3

4 5 6

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 14 / 22



A Small Scale Example

Now, the eigenvectors corresponding to the largest eigenvalues for
these two matrices are as follows (using MATLAB eig function):

q1(L
TL) = (0.226000,0.182068,0.606615,0.372375,0.598376,0.226000)T

q1(LL
T) = (0.458139,0.568687,0.0898142,0.00000,0.478872,0.478872)T

Hence, using a simple tie-breaking strategy, we have:

Authority Ranking = (3,5,4,1,6,2);
Hub Ranking = (2,5,6,1,3,4).

which are quite reasonable. Recall the web graph:

1 2 3

4 5 6

saito@math.ucdavis.edu (UC Davis) HITS May 26 & 31, 2017 14 / 22



A Small Scale Example

Now, how about using the Power Iteration in this example?
With v (0) = 1p

6
(1,1,1,1,1,1)T and 10 iteration, we got

v (10)(LTL) = (0.225992,0.182069,0.606614,0.37239,0.598363,0.226021)T

v (10)(LLT) = (0.458139,0.568673,0.0898284,0.0000,0.478895,0.478864)T

Compare them with

q1(L
TL) = (0.226000,0.182068,0.606615,0.372375,0.598376,0.226000)T

q1(LL
T) = (0.458139,0.568687,0.0898142,0.00000,0.478872,0.478872)T

The relative `2 errors are: 2.9665448×10−5 and 3.1486126×10−5,
respectively.
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A Small Scale Example

Relative `2 Errors of Power Iteration Results
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A Small Scale Example

How can we construct a web graph in the first place?

Well, it’s good to know the HITS algorithm to get the authority and
hub scores of the web sites, but how can we build the underlying web
graph related to given query terms?
That underlying web graph is called a neighborhood graph and
denoted by N .
We want all documents (web sites) containing references to the query
terms as the nodes in N . There are various ways to do this.
One simple method consults the inverted term-document file, which
lists the column indices (= document id’s) of the nonzero entries of
the term-document matrix in the rows (terms) corresponding to the
query terms.
Once those documents are included as the nodes of N , construct
edges of inlinks and outlinks among them.
continue to the next page!
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A Small Scale Example

Then, N is expanded by adding nodes outside of N that either point
to the nodes in N (inlinks) or are pointed to by the nodes in N

(outlinks).
This expansion procedure allows some latent semantic associations to
be made. For example, for the query term car, with the expansion
about documents containing car, some documents containing
automobile may now be added to N , hopefully resolving the problem
of synonyms.
However, this expansion procedure may turn N into a huge graph,
e.g., a node to be added into N may contain a huge number of
outlinks.
Hence, in practice, the maximum number of inlinking nodes and
outlinking nodes to add for a particular node in N is fixed, say, the
first 100 nodes or randomly picked 100 nodes among all the
inlinking/outlinking nodes.
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A Small Scale Example

Strengths of HITS

+ HITS presents two ranked lists to the user: one with the most
authoritative documents (web sites) to the query; the other with the
most “hubby” documents.

+ HITS also casts the over all Web Information Retrieval problem as a
small problem: finding the dominant eigenvectors of relatively small
matrices compared to the entire Web documents.
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A Small Scale Example

Weaknesses of HITS
- HITS’s query dependence: at query time, N must be build and at
least one matrix eigenvector problem solved. This must be done for
each query.

- HITS’s susceptibility to spamming: by adding links to and from a
his/her webpage, a user can slightly influence the authority and hub
scores of his/her page. A slight change in these scores might be
enough to move his/her webpage a few notches up the ranked lists
returned to another user. This becomes an especially important issue
since a typical user searching webpages generally view only the top 20
pages returned in a ranked list.

From a perspective of a webpage owner, adding outlinks from a page is
much easier than adding inlinks to that page. So, influencing one’s hub
score is not difficult.
Yet, since hub scores and authority scores share an interdependence
and are computed interdependently, an authority score will increase as
a hub score increases.
Also, since N is small compared to the entire Web, local changes to
the link structure will appear more drastic.
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since a typical user searching webpages generally view only the top 20
pages returned in a ranked list.

From a perspective of a webpage owner, adding outlinks from a page is
much easier than adding inlinks to that page. So, influencing one’s hub
score is not difficult.
Yet, since hub scores and authority scores share an interdependence
and are computed interdependently, an authority score will increase as
a hub score increases.
Also, since N is small compared to the entire Web, local changes to
the link structure will appear more drastic.
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Weaknesses of HITS . . .

- Topic drift: in building N for a query, it is possible that a very
authoritative yet off-topic document be linked to a document
containing the query terms. This very authoritative document can
carry so much weight that it and its neighboring documents dominate
the relevant ranked list returned to the user, skewing the results
towards off-topic documents.
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