Derivatives, Integrals, & Uniform Convergence

Let \(f(\theta) \sim \sum c_n e^{i\theta} = \sum \hat{f}_n e^{i\theta} \).

And let's write
\[
f'(\theta) \sim \sum c'_n e^{i\theta} = \sum \hat{f}'_n e^{i\theta}
\]
\[
F(\theta) = \int_0^\theta f(\phi) d\phi \sim \sum C_n e^{i\theta} = \sum \hat{F}_n e^{i\theta}
\]

What are the relationship between \(c'_n, C_n \) and \(c_n \)?

Answer: \(c'_n = i n c_n, \quad C_n = \frac{c_n}{i n} \quad (n \neq 0) \)

You can see \(\frac{d}{d\theta} : \text{roughening} \)

\(\int_0^\theta : \text{smoothing} \)

More precisely,

Then let \(f: 2\pi - \text{periodic} \in C(\mathbb{R}) \cap PS(\mathbb{R}) \).

Then, \(c'_n = i n c_n \) \(\text{or} \hat{f}'_n = i n \hat{f}_n \).

In terms of \(a_n, b_n \), we have
\(a'_n = n b_n, \quad b'_n = -n a_n \quad \text{(Exercise!)} \)

(Proof) \[C'_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(\theta) e^{-i\theta} d\theta \]

\[\begin{aligned}
&= \frac{1}{2\pi} \left\{ \left[f(\theta) e^{-i\theta} \right]_{-\pi}^{\pi} + i n \int_{-\pi}^{\pi} f(\theta) e^{i\theta} d\theta \right\} \\
&= \frac{1}{2\pi} \left\{ f(\pi) e^{-i\pi} - f(-\pi) e^{i\pi} \right\} + i n C_n \\
&= i n C_n \quad \text{(since } f: \text{ex. per. \& in } C(\mathbb{R}))
\]
As for the F.S. of an antiderivative of \(f \), note first that

an antiderivative of a periodic fcn
\(\neq \) a periodic fcn in general!

e.g., \(f(\theta) = 1 \) is a periodic fcn, but its antiderivative \(F(\theta) = \Theta \) is not periodic.

The key is \(c_0 = \hat{f}_0 = 0 \) or not.

Since \(\int_0^\infty c_n e^{in\phi} d\phi \) is 2\(\pi \)-periodic if \(n \neq 0 \),
we can see \(F(\theta) \) is 2\(\pi \)-periodic if \(c_0 = \hat{f}_0 = 0 \).

Thus, let \(f \in PC(\mathbb{R}), 2\pi\)-periodic, and
\[
F(\theta) = \int_0^\infty f(\phi) d\phi.
\]
If \(c_0 = \hat{f}_0 = 0 \), then
\[
F(\theta) = C_0 + \sum_{n \neq 0} \frac{a_n}{in} e^{in\theta} = \frac{A_0}{2} + \sum_{n=1}^\infty \left(\frac{a_n}{n} \sin n\theta - \frac{b_n}{n} \cos n\theta \right)
\]
where \(C_0 = \hat{F}_0 = \frac{A_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\theta) d\theta \).

(Proof) \(F(\theta + 2\pi) - F(\theta) = \int_\theta^{\theta+2\pi} f(\phi) d\phi = \int_{-\pi}^{\pi} f(\phi) d\phi \)
\[
= 2\pi C_0 = 0.
\]

So, \(F(\theta) \) is also 2\(\pi \)-periodic!

Moreover, \(F \in C(\mathbb{R}) \cap PS(\mathbb{R}) \) because \(f \in PC(\mathbb{R}) \).

Hence, the F.S. of \(F \) at \(\Theta = F(\Theta) \) \(\forall \Theta \in \mathbb{R} \).

By applying the previous Thm to \(F(\Theta) \), we get
\[
c_n = \hat{f}_n = i n C_n = i n \hat{F}_n \Rightarrow \hat{F}_n = \frac{\hat{f}_n}{i n}, n \neq 0
\]

These two thms suggest:
\[
\frac{d}{d\Theta} : \text{high freq. coeff. } \uparrow \quad ; \quad \int_0^\infty d\phi : \text{high freq. coeff. } \downarrow
\]
The previous corollary, i.e., $S_N[f](0) = \frac{1}{2}[f(0^-) + f(0^+)]$
for $f \in \text{PS}(\mathbb{R})$, 2π-periodic, was about the pointwise convergence of F.S.
Now we want to have a theorem of absolute & uniform convergence!

Def. Suppose $\sum gn(x)$ converges to $g(x)$ on $x \in S$, S: some set. Then if $\sum |gn(x)|$ converges for $x \in S$ too, $\sum gn(x)$ is said to converge absolutely on S. If $\sup |g(x) - \sum_{n=0}^{\infty} gn(x)| \to 0 \ \forall x \in S$, then $\sum gn(x)$ is said to converge uniformly to $g(x)$ on S.

Ex. $g_n(x) = \frac{2(-1)^{n+1}}{n} \sin nx$, $S = [-\pi, \pi]$. $\Rightarrow \sum gn(x)$, i.e., the F.S. of $g(x) = x (2\pi \text{-per.})$, does not converge uniformly to $g(x)$ because the uniform limit of a continuous fun
must be continuous, but g is discontinuous at $x = \pm \pi$.

To check the abs. & unif. conv. of a series, we can use the **Weierstrass M-test** (aka the **Comparison Test**): If $\exists M_n \geq 0$ is a reg. s.t. $|gn(x)| \leq M_n, \ \forall x \in S$ & $\sum M_n < \infty$, then $\sum gn(x)$ conv. abs. & unif. on S.
So, in our case of F.S., because \(\sum_{n=-\infty}^{\infty} |c_n e^{-i\omega_0 n}| = 1 |c_n| \), if \(\sum_{n=-\infty}^{\infty} 1 |c_n| < \infty \), then the F.S. conv. abs. & unif. That is,

Thm (Sufficiency for abs. & unif. conv.)

If \(f \in C(\mathbb{R}) \cap PS(\mathbb{R}), 2\pi \)-periodic, then the F.S. of \(f \) converges to \(f \) abs. & unif. on \(\mathbb{R} \).

(Proof) To show: \(\sum_{n=-\infty}^{\infty} |\hat{f}_n| < \infty \)

(Note that we already know \(\sum_{n=-\infty}^{\infty} |\hat{f}_n|^2 < \infty \) thanks to Bessel's inequality!)

Because of the cond. on \(f \), we have \(\hat{f}_n = i \text{Re} \hat{f}_n \Rightarrow |\hat{f}_n| = |\frac{\hat{f}_n}{n}| \) for \(n \neq 0 \).

Bessel's inequality applied to \(f \), gives us

\[
\sum_{n=-\infty}^{\infty} |\hat{f}_n|^2 \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta < \infty
\]

So, \[
\sum_{n=-\infty}^{\infty} |\hat{f}_n| = |\hat{f}_0| + \sum_{n \neq 0} |\frac{\hat{f}_n}{n}| \leq |\hat{f}_0| + \left(\sum_{n \neq 0} \frac{1}{n^2} \right)^{1/2} \left(\sum_{n \neq 0} |\hat{f}_n|^2 \right)^{1/2}
\]

\[
= |\hat{f}_0| + \frac{\pi}{\sqrt{3}} \left(\sum_{n \neq 0} |\hat{f}_n|^2 \right)^{1/2} < \infty
\]

Remark: This sufficient cond. is not necessarily the sharpest one. We won't prove the following sharper thm's:

Thm (Bernstein, 1914) \(f \in \text{Lip}_\alpha(\mathbb{R}) = C^\alpha(\mathbb{R}), \alpha > \frac{1}{2} \) \(\Rightarrow \) the F.S. of \(f \) conv. abs. & unif.

Thm (Zygmund, 1928) \(f \in \text{Lip}_\alpha(\mathbb{R}) \cap \text{BV}(\mathbb{R}), \alpha > 0 \) \(\Rightarrow \) the F.S. of \(f \) conv. abs. & unif.
Then (Smoothness class & Fourier coef)

Suppose \(f : 2\pi\text{-periodic}, \in C^{k-1}(\mathbb{R}), \) and
\(f^{(k-1)} \in PS(\mathbb{R}), \) i.e., \(f^{(k)} \) exists except perhaps at finitely many pts in each bdd. interval.

Then, \(\sum_{n=0}^{\infty} |n^k \hat{f}_n|^2 < \infty. \)

In particular, \(n^k \hat{f}_n \to 0 \) as \(n \to \pm \infty \)

On the other hand, suppose the Fourier coef.'s satisfy \(|f_n| \leq C |n|^{-(k+\alpha)} \) \(\exists \alpha > 1 \) for \(n \in \mathbb{Z} \setminus \{0\} \). Then \(f \in C^k(\mathbb{R}) \).

(Proof) The first part: Apply the Deriv. Thm. \((\hat{f}_n = \hat{f}_{n-1})\)
\(k \) times to get \(f^{(k)} = (in)^k \hat{f}_n \).

Apply Bessel's ineq. to \(f^{(k)} \) to get
\[
\sum_{n=0}^{\infty} |n^k \hat{f}_n|^2 \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f^{(k)}(\theta)|^2 d\theta < \infty
\]

The second part:
\[
\sum_{n=0}^{\infty} |n^j \hat{f}_n| \leq C \sum_{n=0}^{\infty} |n|^{-(k-j+\alpha)} \leq 2C \sum_{n=0}^{\infty} n^{-\alpha} \text{ for } j \leq k
\]
\(\text{converges since } \alpha > 1. \)

\(\Rightarrow \sum (in)^j \hat{f}_n e^{in\theta} \text{ conv. abs. & unif. to } f^{(j)} \text{, } j \leq k. \)
\(\Rightarrow f^{(j)} \in C(\mathbb{R}), \text{ } j \leq k. \Rightarrow f \in C^k(\mathbb{R}). \)