MAT 207B Methods of Applied Mathematics Homework 2: due Friday, 01/26/18

Problem 1: A flexible rope of length $2 a$ made of uniform material is hanged between the two points $(x, y)=(0,0)$ and $(x, y)=(2 b, 0)$ with $b<a$. The potential energy of this rope is:

$$
V=\int_{0}^{2 b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} y \mathrm{~d} x
$$

Find a curve of $y=y(x)$ of this rope that minimizes this potential energy (which is called a catenary). Note that we have the following relationship:

$$
\int_{0}^{2 b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=2 a
$$

Problem 2: Do Problem 23 on page 27.
Problem 3: Do Problem 28 on page 27. Note that in this problem, p, q, r are functions of x.
Problem 4: Do Problem 31 on page 27.
Problem 5: Do Problem 32 on page 33.
Problem 6: Do Problem 33 on page 33.
Problem 7: Find the partial differential equation (with an appropriate boundary condition) whose solution $u=u(x, y)$ minimizes the following functional

$$
I=\iint_{D}\left(u_{x x}+u_{y y}\right)^{2} \mathrm{~d} x \mathrm{~d} y=\iint_{D}\|\Delta u\|^{2} \mathrm{~d} x \mathrm{~d} y
$$

subject to the natural boundary condition where $D \in \mathbb{R}^{2}$ is a simply-connected domain. Note that the solution of such PDE leads to the natural spline functions in 2 D corresponding to the cubic spline functions in 1D.

