MAT 207B Methods of Applied Mathematics Homework 5: due Friday, 02/16/18

Problem 1: Do Problems 13, 14, 15 on pages 104 and 105. Note that approximating that function f by a trigonometric polynomial of five terms turns out to be the same as truncating the Fourier series with $n=2$, i.e., terms involving $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}$ if they are all nonzeros. If some of them are zeros, you should find the first five nonzero such coefficients.

Problem 2: Do Problems 20 and 21 on page 113.
Problem 3: Do Problem 26 on page 119.
Problem 4: Do Problem 31 on page 125.
Problem 5: Let $f(\theta)$ be 2π-periodic and $f(\theta)=\theta^{2}$ for $-\pi<\theta<\pi$.
(a) Find its Fourier series.
(b) Using the result of Part (a) and the theorem of the Fourier coefficients of an integral of f twice, prove

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} .
$$

Problem 6: Let $f(\theta)$ be 2π-periodic and $f(\theta)=\mathrm{e}^{\theta}$ for $-\pi<\theta \leq \pi$. Let $\sum_{-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n \theta}$ be its Fourier series; thus $\mathrm{e}^{\theta}=\sum_{-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n \theta}$ for $|\theta|<\pi$. If we formally differentiate this equation, we obtain $\mathrm{e}^{\theta}=\sum_{-\infty}^{\infty} \mathrm{i} n c_{n} \mathrm{e}^{\mathrm{i} n \theta}$. But then $c_{n}=\mathrm{i} n c_{n}$, or $(1-\mathrm{i} n) c_{n}=0$, i.e., $c_{n}=0$ for all $n \in \mathbb{Z}$. This is obviously wrong! Where is the mistake? Explain in details.

