MAT 207B Methods of Applied Mathematics Homework 6: due Friday, 02/23/18

Problem 1: Consider a differentiable function *f* on an interval [*a*, *b*].

(a) Show that if f'(x) is bounded on [a, b], then $f \in BV[a, b]$.

[Hint: Show first that such f is *Lipschitz* continuous, i.e., $|f(x) - f(y)| \le L|x - y|$ for any $x, y \in [a, b]$ for some L > 0. Then, use the definition of the bounded variation for f to conclude the statement.]

(b) Let $f(x) = x^2 \sin(x^{-1})$ and $g(x) = x \sin(x^{-1})$ for $x \neq 0$, and f(0) = g(0) = 0. Show that $f \in BV[0,1]$ but $g \notin BV[0,1]$.

[Hint: Use $x_j = \left(\frac{\pi}{2} + j\pi\right)^{-1}$, j = 0, 1, 2, ... as a partition of [0, 1] to show $g \notin BV[0, 1]$.]

- **Problem 2:** Find both the Fourier *cosine* series and the Fourier *sine* series of the following functions on the interval $[0,\pi]$. Then, answer what values these series converge when $\theta = 0$ and $\theta = \pi$.
- (a) $f(\theta) = 1$.
- **(b)** $f(\theta) = \pi \theta$.
- (c) $f(\theta) = \theta^2$.

Problem 3: Find the Fourier *sine* series on the interval $[0, \ell]$ of $f(x) := \ell x - x^2$.

- **Problem 4:** Suppose *f* is a piecewise continuous function on $[0, \pi]$ such that $f(\theta) = f(\pi \theta)$. Let a_n and b_n be the Fourier cosine and sine coefficients of *f*, respectively. Show that $a_n = 0$ for *n* odd and $b_n = 0$ for *n* even.
- **Problem 5:** Show that the space C[a, b] (the space of complex-valued continuous functions defined on the interval [a, b]) is *complete* with respect to the *supremum* norm $||f||_{\infty} := \sup_{x \in [a, b]} |f(x)|$.

Problem 6: Show that $|||f|| - ||g||| \le ||f - g||$. Then, deduce that if $f_n \to f$ in norm, then $||f_n|| \to ||f||$.

Problem 7: Show that if $f_n \in L^2(a, b)$ and $f_n \to f$ in norm, then $\langle f_n, g \rangle \to \langle f, g \rangle$ for all $g \in L^2(a, b)$.

[Hint: Apply the Cauchy-Schwarz inequality to $\langle f_n - f, g \rangle$.]