MAT 207B Methods of Applied Mathematics Homework 6: due Friday, 02/23/18

Problem 1: Consider a differentiable function f on an interval $[a, b]$.
(a) Show that if $f^{\prime}(x)$ is bounded on $[a, b]$, then $f \in B V[a, b]$.
[Hint: Show first that such f is Lipschitz continuous, i.e., $|f(x)-f(y)| \leq L|x-y|$ for any $x, y \in[a, b]$ for some $L>0$. Then, use the definition of the bounded variation for f to conclude the statement.]
(b) Let $f(x)=x^{2} \sin \left(x^{-1}\right)$ and $g(x)=x \sin \left(x^{-1}\right)$ for $x \neq 0$, and $f(0)=g(0)=0$. Show that $f \in$ $B V[0,1]$ but $g \notin B V[0,1]$.
[Hint: Use $x_{j}=\left(\frac{\pi}{2}+j \pi\right)^{-1}, j=0,1,2, \ldots$ as a partition of $[0,1]$ to show $g \notin B V[0,1]$.]

Problem 2: Find both the Fourier cosine series and the Fourier sine series of the following functions on the interval $[0, \pi]$. Then, answer what values these series converge when $\theta=0$ and $\theta=\pi$.
(a) $f(\theta)=1$.
(b) $f(\theta)=\pi-\theta$.
(c) $f(\theta)=\theta^{2}$.

Problem 3: Find the Fourier sine series on the interval $[0, \ell]$ of $f(x):=\ell x-x^{2}$.

Problem 4: Suppose f is a piecewise continuous function on $[0, \pi]$ such that $f(\theta)=f(\pi-\theta)$. Let a_{n} and b_{n} be the Fourier cosine and sine coefficients of f, respectively. Show that $a_{n}=0$ for n odd and $b_{n}=0$ for n even.

Problem 5: Show that the space $C[a, b]$ (the space of complex-valued continuous functions defined on the interval $[a, b])$ is complete with respect to the supremum norm $\|f\|_{\infty}:=\sup _{x \in[a, b]}|f(x)|$.

Problem 6: Show that $|\|f\|-\|g\|| \leq\|f-g\|$. Then, deduce that if $f_{n} \rightarrow f$ in norm, then $\left\|f_{n}\right\| \rightarrow$ $\|f\|$.

Problem 7: Show that if $f_{n} \in L^{2}(a, b)$ and $f_{n} \rightarrow f$ in norm, then $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle$ for all $g \in$ $L^{2}(a, b)$.
[Hint: Apply the Cauchy-Schwarz inequality to $\left\langle f_{n}-f, g\right\rangle$.]

