MAT 207B Methods of Applied Mathematics
Homework 3: due Friday, 01/31/25

Problem 1: Find the Euler-Lagrange equation for the vibrating elastic rod (for potential energy
see HW 1 Problem 8).

Problem 2: Consider only such deflections of the vibrating rod for which du/dx is small of first
order, and neglect all terms small of second and higher order. What is the Euler-Lagrange
equation of the vibrating elastic rod under these simplified conditions?

Problem 3: Reduce the following partial differential equations to ordinary differential equations
by Bernoulli’s separation method:
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Problem 4: Find all values of A for which the following boundary value problems have non-trivial
solutions:
(@ y'+Ay=0,y0)=0=y()
(b) ¥"+Ay=0, y(0)=0=y(3£).

Problem 5: Find constants ay, a;, b; such that
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is a minimum where ¢(x) is a given function.

Problem 6: Show that u(x, y) = f(x+iy), where f is a twice-differentiable function and i = v -1,

is a solution of
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Problem 7: Show that the functions

u(x,y) =logy/x%+ y?,

u(x, y) = x* — y%,
u(x,y) =2xy

are solutions of the partial differential equation in problem 6.

Problem 8: Formulate the boundary and initial value problem for a stretched string of length 7
which is initially plucked up at the midpoint; i.e., the point x = /2 is raised through a
distance & above the rest position and released.

Problem 9: Apply Bernoulli’s separation method to Problem 8 and state all boundary and initial
conditions for X(x) and T'(7).



