
Laplace’s equation in the Polar Coordinate System

As I mentioned in my lecture, if you want to solve a partial differential equa-
tion (PDE) on the domain whose shape is a 2D disk, it is much more convenient
to represent the solution in terms of the polar coordinate system than in terms of
the usual Cartesian coordinate system. For example, the behavior of the drum
surface when you hit it by a stick would be best described by the solution of the
wave equation in the polar coordinate system. In this note, I would like to derive
Laplace’s equation in the polar coordinate system in details.

Recall that Laplace’s equation in R2 in terms of the usual (i.e., Cartesian)
(x, y) coordinate system is:

∂2u

∂x2
+ ∂2u

∂ y2
= uxx +uy y = 0. (1)

The Cartesian coordinates can be represented by the polar coordinates as follows:{
x = r cosθ;

y = r sinθ.
(2)

Let us first compute the partial derivatives of x, y w.r.t. r,θ:
∂x

∂r
= cosθ,

∂x

∂θ
=−r sinθ;

∂y

∂r
= sinθ,

∂y

∂θ
= r cosθ.

(3)

To do so, let’s compute
∂u

∂r
first. We will use the Chain Rule since (x, y) are

functions of (r,θ) as shown in (2).

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r

= ∂u

∂x
cosθ+ ∂u

∂y
sinθ using (3)

= cosθ
∂u

∂x
+ sinθ

∂u

∂y
. (4)

Now, let’s compute
∂2u

∂r 2
. Noticing that both

∂u

∂x
and

∂u

∂y
are functions of (x, y)
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and using (3), we have

∂2u

∂r 2
= cosθ

∂

∂r

∂u

∂x
+ sinθ

∂

∂r

∂u

∂y

= cosθ

(
∂

∂x

∂u

∂x

∂x

∂r
+ ∂

∂y

∂u

∂x

∂y

∂r

)
+ sinθ

(
∂

∂x

∂u

∂y

∂x

∂r
+ ∂

∂y

∂u

∂y

∂y

∂r

)
= cos2θ

∂2u

∂x2
+2cosθ sinθ

∂2u

∂x∂y
+ sin2θ

∂2u

∂ y2
. (5)

Similarly, let’s compute
∂u

∂θ
and

∂2u

∂θ2
.

∂u

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ

= ∂u

∂x
(−r sinθ)+ ∂u

∂y
(r cosθ)

= −r sinθ
∂u

∂x
+ r cosθ

∂u

∂y
.

∂2u

∂θ2
= −r cosθ

∂u

∂x
− r sinθ

∂

∂θ

∂u

∂x
− r sinθ

∂u

∂y
+ r cosθ

∂

∂θ

∂u

∂y

= −r cosθ
∂u

∂x
− r sinθ

(
∂

∂x

∂u

∂x

∂x

∂θ
+ ∂

∂y

∂u

∂x

∂y

∂θ

)
− r sinθ

∂u

∂y
+ r cosθ

(
∂

∂x

∂u

∂y

∂x

∂θ
+ ∂

∂y

∂u

∂y

∂y

∂θ

)
= −r cosθ

∂u

∂x
− r sinθ

(
∂2u

∂x2
(−r sinθ)+ ∂2u

∂x∂y
r cosθ

)
− r sinθ

∂u

∂y
+ r cosθ

(
∂2u

∂x∂y
(−r sinθ)+ ∂2u

∂ y2
r cosθ

)
= −r

(
cosθ

∂u

∂x
+ sinθ

∂u

∂y

)
+ r 2

(
sin2θ

∂2u

∂x2
−2cosθ sinθ

∂2u

∂x∂y
+cos2θ

∂2u

∂ y2

)
Dividing both sides by r 2 and using (4), we have

1

r 2

∂2u

∂θ2
=−1

r

∂u

∂r
+ sin2θ

∂2u

∂x2
−2cosθ sinθ

∂2u

∂x∂y
+cos2θ

∂2u

∂ y2
(6)

Finally, adding (5) and (6), using the obvious relation cos2θ+ sin2θ = 1, we have

∂2u

∂r 2
+ 1

r 2

∂2u

∂θ2
=−1

r

∂u

∂r
+ ∂2u

∂x2
+ ∂2u

∂ y2
,
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which can be cleaned up as:

∂2u

∂x2
+ ∂2u

∂ y2
= ∂2u

∂r 2
+ 1

r

∂u

∂r
+ 1

r 2

∂2u

∂θ2
.

Hence, Laplace’s equation (1) becomes:

uxx +uy y = ur r + 1

r
ur + 1

r 2
uθθ = 0.

Once we derive Laplace’s equation in the polar coordinate system, it is easy to
represent the heat and wave equations in the polar coordinate system. For the heat
equation, the solution u(x, y, t ) = u(r,θ, t ) satisfies

ut = k(uxx +uy y ) = k

(
ur r + 1

r
ur + 1

r 2
uθθ

)
, k > 0: diffusivity,

whereas for the wave equation, we have

ut t = c2(uxx +uy y ) = c2
(
ur r + 1

r
ur + 1

r 2
uθθ

)
c > 0: wave velocity.
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