Laplace’s equation in the Polar Coordinate System

As I mentioned in my lecture, if you want to solve a partial differential equa-
tion (PDE) on the domain whose shape is a 2D disk, it is much more convenient
to represent the solution in terms of the polar coordinate system than in terms of
the usual Cartesian coordinate system. For example, the behavior of the drum
surface when you hit it by a stick would be best described by the solution of the
wave equation in the polar coordinate system. In this note, I would like to derive
Laplace’s equation in the polar coordinate system in details.

Recall that Laplace’s equation in R? in terms of the usual (i.e., Cartesian)
(x,y) coordinate system is:
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The Cartesian coordinates can be represented by the polar coordinates as follows:
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To do so, let’s compute a—u first. We will use the Chain Rule since (x,y) are
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functions of (r,0) as shown in (2).
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and using (3), we have
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Dividing both sides by r? and using (4), we have
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Finally, adding (5) and (6), using the obvious relation cos?6 +sin?f = 1, we have
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which can be cleaned up as:
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Hence, Laplace’s equation (1) becomes:
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Once we derive Laplace’s equation in the polar coordinate system, it is easy to
represent the heat and wave equations in the polar coordinate system. For the heat
equation, the solution u(x, y, ) = u(r,0, t) satisfies
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whereas for the wave equation, we have
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