Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{n(x+2)^{n}}{5^{n-1}}
$$

Solution: Do the ratio test for the absolute convergence. Let $a_{n}=\frac{n(x+2)^{n}}{5^{n-1}}$. Then,

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{(n+1)(x+2)^{n+1}}{5^{n}} \cdot \frac{5^{n-1}}{n(x+2)^{n}}\right| \\
& =\frac{n+1}{5 n}|x+2| \xrightarrow[n \rightarrow \infty]{ } \frac{|x+2|}{5} .
\end{aligned}
$$

Hence, the power series converges absolutely if $\frac{|x+2|}{5}<1$. From this, we can see that the radius of convergence is $R=5$. Also, the interval of convergence is $-5<x+2<5$, i.e., $-7<x<3$.

Let's check the convergence when x is at the boundary points. For $x=-7$, the series becomes:

$$
\sum_{n=1}^{\infty} \frac{n(-5)^{n}}{5^{n-1}}=\sum_{n=1}^{\infty} 5 n(-1)^{n}
$$

Since $\lim _{n \rightarrow \infty} 5 n(-1)^{n} \neq 0$, this series does not converge (the nth Term Test for Divergence). So, we cannot include $x=-7$ in the interval of convergence. How about $x=3$? This leads to

$$
\sum_{n=1}^{\infty} \frac{n 5^{n}}{5^{n-1}}=\sum_{n=1}^{\infty} 5 n
$$

Clearly this diverges (again via the nth Term Test for Divergence). So, we cannot include $x=3$ in the interval of convergence either. Hence the interval of convergence is: $(-7,3)$ or $-7<x<3$.

Problem 2 (10 pts) Consider the function $f(x)=\ln x$.
(a) (5 pts) Approximate $f(x)$ by a Taylor polynomial of degree 2 centered at $x=2$.
(b) (5 pts) How accurate is this approximation when $1 \leq x \leq 3$?

Solution to (a): Since $f^{\prime}(x)=x^{-1}, f^{\prime \prime}(x)=-x^{-2}, f^{\prime \prime \prime}(x)=2 x^{-3}$, by Taylor's formula, we have

$$
\begin{aligned}
f(x) & =\ln x \\
& =P_{2}(x)+R_{2}(x) \\
& =f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime \prime}(2)}{2}(x-2)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-2)^{3} \quad 2<c<x \text { or } x<c<2 \\
& =\ln 2+\frac{1}{2}(x-2)-\frac{1}{8}(x-2)^{2}+\frac{1}{3 c^{3}}(x-2)^{3} .
\end{aligned}
$$

Hence, we have $P_{2}(x)=\ln 2+\frac{1}{2}(x-2)-\frac{1}{8}(x-2)^{2}$.
Solution to (b): The approximation error is:

$$
\left|R_{2}(x)\right|=\frac{1}{3 c^{3}}|x-2|^{3} \leq \frac{1}{3 c^{3}}<\frac{1}{3},
$$

since $|x-2| \leq 1$ and $1<c<3$. Therefore, the accuracy of approximation by $P_{2}(x)$ for $1 \leq x \leq 3$ is bounded by $\frac{1}{3} \approx 0.333$, which is the worst-case scenario.

Problem 3 (10 pts) State and prove the Cauchy-Schwarz Inequality. Note that you also need to state and prove the condition for the equality to hold.

Solution: Let \mathbf{u}, \mathbf{v} be any two vectors in $\mathbb{R}^{n}, n \in \mathbb{N}$. Then, the Cauchy-Schwarz Inequality is

$$
|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}| \quad \text { where the equality holds if and only if } \mathbf{u} \text { and } \mathbf{v} \text { are parallel to each other. }
$$

The proof of this inequality is based on the definition of the dot product. In other words, let θ be the angle between \mathbf{u} and \mathbf{v}. Then,

$$
\begin{aligned}
|\mathbf{u} \cdot \mathbf{v}| & =\| \mathbf{u}| | \mathbf{v}|\cos \theta| \\
& =|\mathbf{u}||\mathbf{v}||\cos \theta| \\
& \leq|\mathbf{u}||\mathbf{v}| \quad \text { since clearly }|\cos \theta| \leq 1 .
\end{aligned}
$$

From the above derivation, it is also clear that the equality holds if and only if $\cos \theta=0$ (which includes the case where either \mathbf{u} or \mathbf{v} is the zero vector), which is the same as saying that \mathbf{u} and \mathbf{v} are parallel to each other.

Problem $4(10 \mathrm{pts})$ Let $P(1,4,6), Q(-2,5,-1), R(1,-1,1)$.
(a) (5 pts) Find the area of the triangle $\triangle P Q R$.

Hint: Length of the cross product of two vectors is equal to the area of a parallelogram formed by those two vectors.
(b) (5 pts) Find the distance from P to the line $Q R$.

Solution to (a): We have $\overrightarrow{P Q}=\langle-2-1,5-4,-1-6\rangle=\langle-3,1,-7\rangle$, and $\overrightarrow{P R}=\langle 1-1,-1-4,1-6\rangle=\langle 0,-5,-5\rangle$. So,

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 1 & -7 \\
0 & -5 & -5
\end{array}\right|=-40 \mathbf{i}-15 \mathbf{j}+15 \mathbf{k}=\langle-40,-15,15\rangle .
$$

Hence, the area of $\triangle P Q R$ is

$$
\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|=\frac{1}{2}|\langle-40,-15,15\rangle|=\frac{1}{2} \sqrt{2050}=\frac{1}{2} \sqrt{25 \cdot 82}=\frac{5}{2} \sqrt{82} .
$$

Solution to (b): You can compute the distance d from P to the line $Q R$ by the formula based on the cross product, i.e.,

$$
d=\frac{|\overrightarrow{Q P} \times \overrightarrow{Q R}|}{|\overrightarrow{Q R}|}
$$

Now, notice that

$$
|\overrightarrow{Q P} \times \overrightarrow{Q R}|=|\overrightarrow{P Q} \times \overrightarrow{P R}|
$$

since both amounts to the area of the same parallelogram, which is the twice as the area of the triangle $\triangle P Q R$. Since $\overrightarrow{Q R}=\langle 3,-6,2\rangle$, we have

$$
d=\frac{5 \sqrt{82}}{\sqrt{3^{2}+(-6)^{2}+2^{2}}}=\frac{5}{7} \sqrt{82} .
$$

Alternatively, you can reason as follows: the distance d can be computed by the following basic formula

$$
\text { Area of } \triangle P Q R=\frac{1}{2} d \cdot|\overrightarrow{Q R}| \text {. }
$$

Since $\overrightarrow{Q R}=\langle 3,-6,2\rangle$, we have

$$
d=\frac{2 \times \frac{5}{2} \sqrt{82}}{\sqrt{3^{2}+(-6)^{2}+2^{2}}}=\frac{5}{7} \sqrt{82} \text {. }
$$

Problem 5 (10 pts) Find the limit if it exists, or show that the limit does not exist.
(a) $(5 \mathrm{pts})$

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}
$$

Hint: Consider $(x, y) \rightarrow(0,0)$ along the line $y=m x$.
(b) $(5 \mathrm{pts})$

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}} .
$$

Hint: Consider the limit in the polar coordinates (r, θ).
Solution to (a): Consider $(x, y) \rightarrow(0,0)$ along the line $y=m x$ for some $m \in \mathbb{R}$. Then,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}=\lim _{x \rightarrow 0} \frac{m^{4} x^{4}}{x^{4}+3 m^{4} x^{4}}=\lim _{x \rightarrow 0} \frac{m^{4}}{1+3 m^{4}}=\frac{m^{4}}{1+3 m^{4}} .
$$

This value depends on m. Since the limit depends on how the point (x, y) approaches $(0,0)$, the limit does not exist.
Solution to (b): Consider the polar coordinates: $x=r \cos \theta, y=r \sin \theta$, where $r \geq 0,0 \leq$ $\theta<2 \pi$.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=\lim _{r \rightarrow 0} \frac{r^{2} \cos \theta \sin \theta}{\sqrt{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}}=\lim _{r \rightarrow 0} \frac{r^{2} \cos \theta \sin \theta}{r}=\lim _{r \rightarrow 0} r \cos \theta \sin \theta=0 .
$$

This is true regardless of the direction of approach θ. Hence, the limit exists and its value is 0 .

Problem 6 (10 pts) Verify that the function of two variables

$$
u(x, t)=\mathrm{e}^{-\alpha^{2} k^{2} t} \sin k x,
$$

where k is an arbitrary positive integer is a solution of the heat conduction equation over the interval $x \in[0, \pi]$

$$
u_{t}=\alpha^{2} u_{x x},
$$

with the boundary condition

$$
u(0, t)=u(\pi, t)=0 \quad \text { for all } t \geq 0 .
$$

Solution: This is a quite straightforward problem.

$$
\begin{gathered}
u_{t}=\frac{\partial u}{\partial t}=-\alpha^{2} k^{2} \mathrm{e}^{-\alpha^{2} k^{2} t} \sin k x . \\
u_{x}=\frac{\partial u}{\partial x}=\mathrm{e}^{-\alpha^{2} k^{2} t} \cdot k \cos k x, \quad u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}=\mathrm{e}^{-\alpha^{2} k^{2} t} \cdot\left(-k^{2}\right) \sin k x .
\end{gathered}
$$

Hence,

$$
\alpha^{2} u_{x x}=-\alpha^{2} k^{2} \mathrm{e}^{-\alpha^{2} k^{2} t} \sin k x=u_{t} .
$$

Finally, we can easily check that the boundary condition is satisfied since

$$
u(0, t)=\mathrm{e}^{-\alpha^{2} k^{2} t} \sin k 0=0, \quad u(\pi, t)=\mathrm{e}^{-\alpha^{2} k^{2} t} \sin k \pi=0,
$$

for any $t \geq 0$.

Problem 7 (10 pts) Assuming that the equation

$$
\sin x+\cos y=\sin x \cos y .
$$

defines y as a differentiable function of x, use the Implicit Differentiation Theorem to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution: Let $F(x, y)=\sin x+\cos y-\sin x \cos y=0$. Then, the Implicit Differentiation Theorem says that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}} .
$$

Now,

$$
F_{x}(x, y)=\cos x-\cos x \cos y, \quad F_{y}(x, y)=-\sin y+\sin x \sin y .
$$

Hence,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\cos x-\cos x \cos y}{-\sin y+\sin x \sin y}=\frac{\cos x(1-\cos y)}{\sin y(1-\sin x)},
$$

as long as $F_{y}(x, y)=\sin y(\sin x-1) \neq 0$.

Problem 8 (10 pts) Find the direction in which $f(x, y, z)=\ln \left(x y^{2} z^{3}\right)$
(a) (3 pts) Increases most rapidly at the point $(1,2,3)$,
(b) $(3 \mathrm{pts})$ Decreases most rapidly at the point $(1,2,3)$.
(c) $(4 \mathrm{pts})$ Does not change (i.e., is flat) at the point $(1,2,3)$.

Solution to (a): First of all, note that

$$
f(x, y, z)=\ln \left(x y^{2} z^{3}\right)=\ln x+2 \ln y+3 \ln z .
$$

Now, the gradient vector is

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle\frac{1}{x}, \frac{2}{y}, \frac{3}{z}\right\rangle .
$$

So, $\nabla f(1,2,3)=\langle 1,1,1\rangle$. Now, f increases most rapidly in the direction of ∇f. Hence, this direction is $\langle 1,1,1\rangle$.
(It is up to you whether you want to make it to the normal vector of length 1, i.e., $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$, but it is not necessary in this case.)
Solution to (b): f decreases most rapidly in the direction of $-\nabla f$. Hence, it is $-\langle 1,1,1\rangle=$ $\langle-1,-1,-1\rangle$.
Solution to (c): f does not change in the direction orthogonal to ∇f. Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ be this directional vector. Then,

$$
\mathbf{u} \cdot \nabla f(1,2,3)=0 \Longleftrightarrow \mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \cdot\langle 1,1,1\rangle=0 \Longleftrightarrow u_{1}+u_{2}+u_{3}=0 .
$$

So, along any direction $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ satisfying $u_{1}+u_{2}+u_{3}=0$, this function f does not change (or is flat) at the point $(1,2,3)$.

Problem 9 (10 pts)

(a) (5 pts) Show the equation of the tangent plane at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}+\frac{z_{0} z}{c^{2}}=1
$$

(b) (5 pts) Compute the normal line to the same ellipsoid at the same point P_{0}. Furthermore, compute the point where this normal line intersects with the $x y$-plane. Assume $z_{0} \neq 0$.
Solution to (a): Let $F(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0$. The equation of the tangent plane to F at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

Since we have

$$
F_{x}(x, y, z)=\frac{2 x}{a^{2}}, \quad F_{x}(x, y, z)=\frac{2 y}{b^{2}}, \quad F_{x}(x, y, z)=\frac{2 z}{c^{2}}
$$

the equation of the tangent plane becomes

$$
\begin{aligned}
\frac{2 x_{0}}{a^{2}}\left(x-x_{0}\right)+\frac{2 y_{0}}{b^{2}}\left(y-y_{0}\right)+\frac{2 z_{0}}{c^{2}}\left(z-z_{0}\right)=0 & \Longleftrightarrow \frac{x_{0}\left(x-x_{0}\right)}{a^{2}}+\frac{y_{0}\left(y-y_{0}\right)}{b^{2}}+\frac{z_{0}\left(z-z_{0}\right)}{c^{2}}=0 \\
& \Longleftrightarrow \frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}+\frac{z_{0} z}{c^{2}}=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}}=1
\end{aligned}
$$

In the last line, the righthand side becomes 1 since the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is on this ellipsoid.
Solution to (b): At the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$, the gradient vector is $\nabla F\left(x_{0}, y_{0}, z_{0}\right)=\left\langle\frac{2 x_{0}}{a^{2}}, \frac{2 y_{0}}{b^{2}}, \frac{2 z_{0}}{c^{2}}\right\rangle$. The normal line passes through the point P_{0} is parallel to this gradient vector. Hence, the equation of this normal line is

$$
\left\{\begin{array}{l}
x=x_{0}+t \cdot \frac{2 x_{0}}{a^{2}}=x_{0}\left(1+\frac{2}{a^{2}} t\right) \\
y=y_{0}+t \cdot \frac{2 y_{0}}{b^{2}}=y_{0}\left(1+\frac{2}{b^{2}} t\right) \\
z=z_{0}+t \cdot \frac{2 z_{0}}{c^{2}}=z_{0}\left(1+\frac{2}{c^{2}} t\right)
\end{array},\right.
$$

where t is an arbitrary real value.
As for the intersection of this normal line and the $x y$-plane, because $x y$-plane is the same as the equation $z=0$, we seek the value of t that makes $z=0$. This means that $t=-\frac{c^{2}}{2}$ since $z_{0} \neq 0$. Hence, we insert this t into the above equation to get the coordinate of the intersection $(x, y, z)=\left(x_{0}\left(1-\frac{c^{2}}{a^{2}}\right), y_{0}\left(1-\frac{c^{2}}{b^{2}}\right), 0\right)$.
\qquad

Problem 10 (10 pts) Find the linearization of $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(3,2,6)$. Then use it to approximate $f(3.1,1.9,6.2)$ by the three decimal point number. Note that the true value of $f(3.1,1.9,6.2)$ is 7.188 in the three decimal point number.

Solution: The linearization of $f(x, y, z)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
L(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) .
$$

We have

$$
f_{x}(x, y, z)=\frac{1}{2} \cdot\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \cdot 2 x=x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} .
$$

Since $f(x, y, z)$ is symmetric with respect to x, y, z, we immediately have

$$
f_{y}(x, y, z)=y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}, \quad f_{z}(x, y, z)=z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} .
$$

Now, at the point $(3,2,6)$, we have $f(3,2,6)=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{49}=7$. Hence,

$$
L(x, y, z)=7+\frac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6) .
$$

Let's now use this to approximate $f(3.1,1.9,6.2)$.

$$
L(3.1,1.9,6.2)=7+\frac{3}{7}(3.1-3)+\frac{2}{7}(1.9-2)+\frac{6}{7}(6.2-6)=7+\frac{1.3}{7} \approx 7.186 .
$$

On the other hand, the true value is $f(3.1,1.9,6.2)=7.188$ as the hint suggests. So, the approximation is quite close to the true value and the error is
$|f(3.1,1.9,6.2)-L(3.1,1.9,6.2)|=0.002$. Observe that this linear approximation is quite good!

Problem 11 (10 pts) Find the absolute maximum and minimum values of

$$
f(x, y)=x^{2}-x y+y^{2}+1
$$

on the closed triangular domain bounded by the lines $x=0, y=2, y=2 x$, i.e.,

$$
\Omega=\{(x, y) \mid x \geq 0, y \leq 2, y \geq 2 x\} .
$$

Solution: The domain Ω is the shaded triangle in the figure.

Figure 1: A triangular domain Ω.

Step 1: Compute all the critical points in Ω.

$$
f_{x}=2 x-y=0, f_{y}=-x+2 y=0 \Longleftrightarrow y=2 x, x=2 y \Longleftrightarrow x=4 x \Longleftrightarrow x=0 .
$$

Hence, $x=y=0$ is the only critical point in Ω. Now we need to check whether this point is local min., local max., or a saddle point. To do so, we compute

$$
f_{x x}(x, y)=2, f_{y y}(x, y)=2, f_{x y}(x, y)=-1
$$

From these, we do the Second Derivative Test:

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-\left(f_{x y}(0,0)\right)^{2}=2 \cdot 2-(-1)^{2}=3>0 .
$$

Since $D(0,0)>0$ and $f_{x x}(0,0)=2>0$, the value $f(0,0)=1$ is the local minimum.

Step 2 : Find the extreme values at the boundary of Ω.
On $x=0: f(0, y)=y^{2}+1,0 \leq y \leq 2$. So, on this boundary, the minimum is $f(0,0)=1$ while the maximum is $f(0,2)=5$.
On $y=2$: $f(x, 2)=x^{2}-2 x+5=(x-1)^{2}+4,0 \leq x \leq 1$. So, on this boundary, the minimum is $f(1,2)=4$ while the maximum is $f(0,2)=5$.
On $y=2 x: f(x, 2 x)=3 x^{2}+1,0 \leq x \leq 1$. So, on this boundary, the minimum is $f(0,0)=1$ while the maximum is $f(1,2)=4$.

Step 3: Find the largest and the smallest values from the results of Steps 1 and 2.
Combining all the results we got so far, we can easily conclude that
the absolute maximum is $f(0,2)=5$ while the absolute minimum is $f(0,0)=1$.

Problem 12 (10 pts) Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=\mathrm{e}^{x y} \quad \text { subject to } \quad x^{2}+y^{2}=1
$$

Note that we only consider the real values for x and y, not the complex values.
Solution: Let $g(x, y)=x^{2}+y^{2}-1=0$ be the constraint. Let's find the points (x, y) and the parameter λ satisfying

$$
\begin{equation*}
\nabla f=\lambda \nabla g, \quad g(x, y)=0 \tag{1}
\end{equation*}
$$

We have

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle y \mathrm{e}^{x y}, x \mathrm{e}^{x y}\right\rangle, \quad \nabla g=\left\langle g_{x}, g_{y}\right\rangle=\langle 2 x, 2 y\rangle .
$$

Hence, Eq. (1) leads to

$$
\begin{align*}
y \mathrm{e}^{x y} & =2 \lambda x \tag{2}\\
x \mathrm{e}^{x y} & =2 \lambda y \tag{3}\\
x^{2}+y^{2} & =1 \tag{4}
\end{align*}
$$

We can see that $\lambda \neq 0$ because if $\lambda=0$, then $x=y=0$ from Eqn's (2) and (3), which contradicts Eq. (4). Similarly, $x \neq 0$ as well as $y \neq 0$. Hence, we can divide Eq. (2) by Eq. (3) to get

$$
\frac{y \mathrm{e}^{x y}}{x \mathrm{e}^{x y}}=\frac{2 \lambda x}{2 \lambda y} \Longleftrightarrow \frac{y}{x}=\frac{x}{y} \Longleftrightarrow x^{2}=y^{2}
$$

This implies $x=y$ or $x=-y$. Insert these into Eq. (4) gives us $2 x^{2}=1$ or $x= \pm \frac{1}{\sqrt{2}}$. So, we have $(x, y)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. From Eq. (2), the corresponding λ 's can be easily calculated as $\lambda=\frac{\sqrt{\mathrm{e}}}{2},-\frac{1}{2 \sqrt{\mathrm{e}}},-\frac{1}{2 \sqrt{\mathrm{e}}}$, or $\frac{\sqrt{\mathrm{e}}}{2}$, respectively. Hence,

$$
\begin{aligned}
& f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\sqrt{\mathrm{e}} \\
& f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{\mathrm{e}}}
\end{aligned}
$$

Therefore, the maxima are

$$
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\sqrt{\mathrm{e}},
$$

and the minima are

$$
f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{\mathrm{e}}} .
$$

