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Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

∞∑
n=1

n(x +2)n

5n−1
.

Solution: Do the ratio test for the absolute convergence. Let an = n(x +2)n

5n−1
. Then,

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ (n +1)(x +2)n+1

5n
· 5n−1

n(x +2)n

∣∣∣∣
= n +1

5n
|x +2| −−−−→

n→∞
|x +2|

5
.

Hence, the power series converges absolutely if
|x +2|

5
< 1. From this, we can see that the

radius of convergence is R = 5 . Also, the interval of convergence is −5 < x + 2 < 5, i.e.,
−7 < x < 3.

Let’s check the convergence when x is at the boundary points. For x = −7, the series be-
comes: ∞∑

n=1

n(−5)n

5n−1
=

∞∑
n=1

5n(−1)n .

Since lim
n→∞5n(−1)n 6= 0, this series does not converge (the nth Term Test for Divergence).

So, we cannot include x =−7 in the interval of convergence. How about x = 3? This leads
to ∞∑

n=1

n5n

5n−1
=

∞∑
n=1

5n.

Clearly this diverges (again via the nth Term Test for Divergence). So, we cannot include
x = 3 in the interval of convergence either. Hence the interval of convergence is: (−7,3) or
−7 < x < 3 .
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Problem 2 (10 pts) Consider the function f (x) = ln x.

(a) (5 pts) Approximate f (x) by a Taylor polynomial of degree 2 centered at x = 2.

(b) (5 pts) How accurate is this approximation when 1 ≤ x ≤ 3?

Solution to (a): Since f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, by Taylor’s formula, we
have

f (x) = ln x

= P2(x)+R2(x)

= f (2)+ f ′(2)(x −2)+ f ′′(2)

2
(x −2)2 + f ′′′(c)

3!
(x −2)3 2 < c < x or x < c < 2

= ln2+ 1

2
(x −2)− 1

8
(x −2)2 + 1

3c3
(x −2)3.

Hence, we have P2(x) = ln2+ 1

2
(x −2)− 1

8
(x −2)2 .

Solution to (b): The approximation error is:

|R2(x)| = 1

3c3
|x −2|3 ≤ 1

3c3
< 1

3
,

since |x −2| ≤ 1 and 1 < c < 3. Therefore, the accuracy of approximation by P2(x) for

1 ≤ x ≤ 3 is bounded by
1

3
≈ 0.333 , which is the worst-case scenario.
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Problem 3 (10 pts) State and prove the Cauchy-Schwarz Inequality. Note that you also need to
state and prove the condition for the equality to hold.

Solution: Let u, v be any two vectors in Rn , n ∈N. Then, the Cauchy-Schwarz Inequality is

|u ·v| ≤ |u| |v| where the equality holds if and only if u and v are parallel to each other.

The proof of this inequality is based on the definition of the dot product. In other words, let
θ be the angle between u and v. Then,

|u ·v| = ||u| |v| cosθ|
= |u| |v| |cosθ|
≤ |u| |v| since clearly |cosθ| ≤ 1.

From the above derivation, it is also clear that the equality holds if and only if cosθ = 0
(which includes the case where either u or v is the zero vector), which is the same as saying
that u and v are parallel to each other.
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Problem 4 (10 pts) Let P (1,4,6), Q(−2,5,−1), R(1,−1,1).

(a) (5 pts) Find the area of the triangle 4PQR.
Hint: Length of the cross product of two vectors is equal to the area of a parallelogram
formed by those two vectors.

(b) (5 pts) Find the distance from P to the line QR.

Solution to (a): We have
−−→
PQ = 〈−2−1,5−4,−1−6〉 = 〈−3,1,−7〉, and−→

PR = 〈1−1,−1−4,1−6〉 = 〈0,−5,−5〉. So,

−−→
PQ ×−→

PR =
∣∣∣∣∣∣

i j k
−3 1 −7
0 −5 −5

∣∣∣∣∣∣=−40 i−15 j+15k = 〈−40,−15,15〉.

Hence, the area of 4PQR is

1

2

∣∣∣−−→PQ ×−→
PR

∣∣∣= 1

2
|〈−40,−15,15〉| = 1

2

p
2050 = 1

2

p
25 ·82 = 5

2

p
82 .

Solution to (b): You can compute the distance d from P to the line QR by the formula based
on the cross product, i.e.,

d =

∣∣∣−−→QP ×−−→
QR

∣∣∣∣∣∣−−→QR
∣∣∣ .

Now, notice that ∣∣∣−−→QP ×−−→
QR

∣∣∣= ∣∣∣−−→PQ ×−→
PR

∣∣∣
since both amounts to the area of the same parallelogram, which is the twice as the area
of the triangle 4PQR. Since

−−→
QR = 〈3,−6,2〉, we have

d = 5
p

82√
32 + (−6)2 +22

= 5

7

p
82 .

Alternatively, you can reason as follows: the distance d can be computed by the fol-
lowing basic formula

Area of 4PQR = 1

2
d ·

∣∣∣−−→QR
∣∣∣ .

Since
−−→
QR = 〈3,−6,2〉, we have

d = 2× 5
2

p
82√

32 + (−6)2 +22
= 5

7

p
82 .
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Problem 5 (10 pts) Find the limit if it exists, or show that the limit does not exist.

(a) (5 pts)

lim
(x,y)→(0,0)

y4

x4 +3y4
.

Hint: Consider (x, y) → (0,0) along the line y = mx.

(b) (5 pts)
lim

(x,y)→(0,0)

x y√
x2 + y2

.

Hint: Consider the limit in the polar coordinates (r,θ).

Solution to (a): Consider (x, y) → (0,0) along the line y = mx for some m ∈R. Then,

lim
(x,y)→(0,0)

y4

x4 +3y4
= lim

x→0

m4x4

x4 +3m4x4
= lim

x→0

m4

1+3m4
= m4

1+3m4
.

This value depends on m. Since the limit depends on how the point (x, y) approaches
(0,0), the limit does not exist .

Solution to (b): Consider the polar coordinates: x = r cosθ, y = r sinθ, where r ≥ 0, 0 ≤
θ < 2π.

lim
(x,y)→(0,0)

x y√
x2 + y2

= lim
r→0

r 2 cosθ sinθ√
r 2(cos2θ+ sin2θ)

= lim
r→0

r 2 cosθ sinθ

r
= lim

r→0
r cosθ sinθ = 0.

This is true regardless of the direction of approach θ. Hence, the limit exists and its value is 0 .
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Problem 6 (10 pts) Verify that the function of two variables

u(x, t ) = e−α
2k2t sinkx,

where k is an arbitrary positive integer is a solution of the heat conduction equation over the
interval x ∈ [0,π]

ut =α2uxx ,

with the boundary condition

u(0, t ) = u(π, t ) = 0 for all t ≥ 0.

Solution: This is a quite straightforward problem.

ut = ∂u

∂t
=−α2k2e−α

2k2t sinkx.

ux = ∂u

∂x
= e−α

2k2t ·k coskx, uxx = ∂2u

∂x2
= e−α

2k2t · (−k2)sinkx.

Hence,
α2uxx =−α2k2e−α

2k2t sinkx = ut .

Finally, we can easily check that the boundary condition is satisfied since

u(0, t ) = e−α
2k2t sink0 = 0, u(π, t ) = e−α

2k2t sinkπ= 0,

for any t ≥ 0.
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Problem 7 (10 pts) Assuming that the equation

sin x +cos y = sin x cos y.

defines y as a differentiable function of x, use the Implicit Differentiation Theorem to find
dy

dx
.

Solution: Let F (x, y) = sin x +cos y − sin x cos y = 0. Then, the Implicit Differentiation Theorem
says that

dy

dx
=−Fx

Fy
.

Now,
Fx(x, y) = cos x −cos x cos y, Fy (x, y) =−sin y + sin x sin y.

Hence,
dy

dx
=− cos x −cos x cos y

−sin y + sin x sin y
= cos x (1−cos y)

sin y (1− sin x)
,

as long as Fy (x, y) = sin y (sin x −1) 6= 0.
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Problem 8 (10 pts) Find the direction in which f (x, y, z) = ln(x y2z3)

(a) (3 pts) Increases most rapidly at the point (1,2,3),

(b) (3 pts) Decreases most rapidly at the point (1,2,3).

(c) (4 pts) Does not change (i.e., is flat) at the point (1,2,3).

Solution to (a): First of all, note that

f (x, y, z) = ln(x y2z3) = ln x +2ln y +3ln z.

Now, the gradient vector is

∇ f (x, y, z) = 〈 fx , fy , fz〉 =
〈

1

x
,

2

y
,

3

z

〉
.

So, ∇ f (1,2,3) = 〈1,1,1〉. Now, f increases most rapidly in the direction of ∇ f . Hence,
this direction is 〈1,1,1〉 .
(It is up to you whether you want to make it to the normal vector of length 1, i.e.,〈

1p
3

,
1p
3

,
1p
3

〉
, but it is not necessary in this case.)

Solution to (b): f decreases most rapidly in the direction of −∇ f . Hence, it is −〈1,1,1〉 =
〈−1,−1,−1〉 .

Solution to (c): f does not change in the direction orthogonal to ∇ f . Let u = 〈u1,u2,u3〉 be
this directional vector. Then,

u ·∇ f (1,2,3) = 0 ⇐⇒ u = 〈u1,u2,u3〉 · 〈1,1,1〉 = 0 ⇐⇒ u1 +u2 +u3 = 0.

So, along any direction u = 〈u1,u2,u3〉 satisfying u1 +u2 +u3 = 0 , this function f does
not change (or is flat) at the point (1,2,3).
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Problem 9 (10 pts)

(a) (5 pts) Show the equation of the tangent plane at the point P0(x0, y0, z0) on the ellipsoid
x2

a2
+ y2

b2
+ z2

c2
= 1 is

x0 x

a2
+ y0 y

b2
+ z0 z

c2
= 1.

(b) (5 pts) Compute the normal line to the same ellipsoid at the same point P0. Furthermore,
compute the point where this normal line intersects with the x y-plane. Assume z0 6= 0.

Solution to (a): Let F (x, y, z) = x2

a2
+ y2

b2
+ z2

c2
−1 = 0. The equation of the tangent plane to

F at (x0, y0, z0) is

Fx(x0, y0, z0)(x −x0)+Fy (x0, y0, z0)(y − y0)+Fz(x0, y0, z0)(z − z0) = 0.

Since we have

Fx(x, y, z) = 2x

a2
, Fx(x, y, z) = 2y

b2
, Fx(x, y, z) = 2z

c2
,

the equation of the tangent plane becomes

2x0

a2
(x −x0)+ 2y0

b2
(y − y0)+ 2z0

c2
(z − z0) = 0 ⇐⇒ x0(x −x0)

a2
+ y0(y − y0)

b2
+ z0(z − z0)

c2
= 0

⇐⇒ x0x

a2
+ y0 y

b2
+ z0z

c2
= x2

0

a2
+ y2

0

b2
+ z2

0

c2
= 1.

In the last line, the righthand side becomes 1 since the point P0(x0, y0, z0) is on this
ellipsoid.

Solution to (b): At the point P0(x0, y0, z0), the gradient vector is ∇F (x0, y0, z0) = 〈2x0

a2
,

2y0

b2
,

2z0

c2
〉.

The normal line passes through the point P0 is parallel to this gradient vector. Hence,
the equation of this normal line is

x = x0 + t · 2x0
a2 = x0

(
1+ 2

a2 t
)

y = y0 + t · 2y0

b2 = y0

(
1+ 2

b2 t
)

z = z0 + t · 2z0
c2 = z0

(
1+ 2

c2 t
) ,

where t is an arbitrary real value.
As for the intersection of this normal line and the x y-plane, because x y-plane is the
same as the equation z = 0, we seek the value of t that makes z = 0. This means

that t = −c2

2
since z0 6= 0. Hence, we insert this t into the above equation to get the

coordinate of the intersection (x, y, z) =
(

x0

(
1− c2

a2

)
, y0

(
1− c2

b2

)
, 0

)
.
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Problem 10 (10 pts) Find the linearization of f (x, y, z) =√
x2 + y2 + z2 at the point (3,2,6). Then

use it to approximate f (3.1,1.9,6.2) by the three decimal point number. Note that the true
value of f (3.1,1.9,6.2) is 7.188 in the three decimal point number.

Solution: The linearization of f (x, y, z) at the point (x0, y0, z0) is

L(x, y, z) = f (x0, y0, z0)+ fx(x0, y0, z0)(x −x0)+ fy (x0, y0, z0)(y − y0)+ fz(x0, y0, z0)(z − z0).

We have
fx(x, y, z) = 1

2
· (x2 + y2 + z2)−

1
2 ·2x = x(x2 + y2 + z2)−

1
2 .

Since f (x, y, z) is symmetric with respect to x, y , z, we immediately have

fy (x, y, z) = y(x2 + y2 + z2)−
1
2 , fz(x, y, z) = z(x2 + y2 + z2)−

1
2 .

Now, at the point (3,2,6), we have f (3,2,6) =
p

32 +22 +62 =p
49 = 7. Hence,

L(x, y, z) = 7+ 3

7
(x −3)+ 2

7
(y −2)+ 6

7
(z −6) .

Let’s now use this to approximate f (3.1,1.9,6.2).

L(3.1,1.9,6.2) = 7+ 3

7
(3.1−3)+ 2

7
(1.9−2)+ 6

7
(6.2−6) = 7+ 1.3

7
≈ 7.186 .

On the other hand, the true value is f (3.1,1.9,6.2) = 7.188 as the hint suggests. So, the
approximation is quite close to the true value and the error is
| f (3.1,1.9,6.2)−L(3.1,1.9,6.2)| = 0.002 . Observe that this linear approximation is quite

good!
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Problem 11 (10 pts) Find the absolute maximum and minimum values of

f (x, y) = x2 −x y + y2 +1,

on the closed triangular domain bounded by the lines x = 0, y = 2, y = 2x, i.e.,

Ω= {(x, y) |x ≥ 0, y ≤ 2, y ≥ 2x}.

Solution: The domain Ω is the shaded triangle in the figure.

Figure 1: A triangular domain Ω.

Step 1: Compute all the critical points in Ω.

fx = 2x − y = 0, fy =−x +2y = 0 ⇐⇒ y = 2x, x = 2y ⇐⇒ x = 4x ⇐⇒ x = 0.

Hence, x = y = 0 is the only critical point in Ω. Now we need to check whether this point is
local min., local max., or a saddle point. To do so, we compute

fxx(x, y) = 2, fy y (x, y) = 2, fx y (x, y) =−1.

From these, we do the Second Derivative Test:

D(0,0) = fxx(0,0) fy y (0,0)− (
fx y (0,0)

)2 = 2 ·2− (−1)2 = 3 > 0.

Since D(0,0) > 0 and fxx(0,0) = 2 > 0, the value f (0,0) = 1 is the local minimum.
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Step 2 : Find the extreme values at the boundary of Ω.

On x = 0: f (0, y) = y2 +1, 0 ≤ y ≤ 2. So, on this boundary, the minimum is f (0,0) = 1 while
the maximum is f (0,2) = 5.

On y = 2: f (x,2) = x2 −2x +5 = (x −1)2 +4, 0 ≤ x ≤ 1. So, on this boundary, the minimum
is f (1,2) = 4 while the maximum is f (0,2) = 5.

On y = 2x: f (x,2x) = 3x2 +1, 0 ≤ x ≤ 1. So, on this boundary, the minimum is f (0,0) = 1
while the maximum is f (1,2) = 4.

Step 3: Find the largest and the smallest values from the results of Steps 1 and 2.

Combining all the results we got so far, we can easily conclude that
the absolute maximum is f (0,2) = 5 while the absolute minimum is f (0,0) = 1 .
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Problem 12 (10 pts) Use Lagrange multipliers to find the maximum and minimum values of the
function

f (x, y) = ex y subject to x2 + y2 = 1.

Note that we only consider the real values for x and y , not the complex values.

Solution: Let g (x, y) = x2+ y2−1 = 0 be the constraint. Let’s find the points (x, y) and the param-
eter λ satisfying

∇ f =λ∇g , g (x, y) = 0. (1)

We have
∇ f = 〈 fx , fy〉 = 〈y ex y , x ex y〉, ∇g = 〈gx , g y〉 = 〈2x,2y〉.

Hence, Eq. (1) leads to

y ex y = 2λx (2)
x ex y = 2λy (3)

x2 + y2 = 1. (4)

We can see that λ 6= 0 because if λ = 0, then x = y = 0 from Eqn’s (2) and (3), which
contradicts Eq. (4). Similarly, x 6= 0 as well as y 6= 0. Hence, we can divide Eq. (2) by Eq. (3)
to get

y ex y

x ex y
= 2λx

2λy
⇐⇒ y

x
= x

y
⇐⇒ x2 = y2.

This implies x = y or x = −y . Insert these into Eq. (4) gives us 2x2 = 1 or x = ± 1p
2

. So,

we have (x, y) =
(

1p
2

,
1p
2

)
,
(

1p
2

,− 1p
2

)
,
(
− 1p

2
,

1p
2

)
, or

(
− 1p

2
,− 1p

2

)
. From Eq. (2), the

corresponding λ’s can be easily calculated as λ =
p

e

2
, − 1

2
p

e
, − 1

2
p

e
, or

p
e

2
, respectively.

Hence,

f

(
1p
2

,
1p
2

)
= f

(
− 1p

2
,− 1p

2

)
=p

e,

f

(
1p
2

,− 1p
2

)
= f

(
− 1p

2
,

1p
2

)
= 1p

e
.

Therefore, the maxima are

f

(
1p
2

,
1p
2

)
= f

(
− 1p

2
,− 1p

2

)
=p

e ,

and the minima are

f

(
1p
2

,− 1p
2

)
= f

(
− 1p

2
,

1p
2

)
= 1p

e
.
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