Math 22B: Additional Exercises

Sec. 7.6: 8, 13, 28
Sec. 7.7: 1, 10, 13
Sec. 7.8: 5, 8,17, 19

1 Sec. 7.6
7.6.8) Given the system of ODE’s
x' = Ax
where
-3 0 2
A= 1 -1 0
-2 -1 0

then as discussed before, if we assume the solutions are of the form
x = e’

then r and & are the eigenvalues and eigenvectors of the matrix A. To find the
eigenvalues we set

det(A —rI) =0
or
-3—-r 0 2
1 —1—-r 0 =0
-2 -1 0-r

(=3 =I(=1 =7)(=r) = 0] = 0+ 2[(1)(=1) = (=2) (=1 =7)] = 0
>+ 4r? +7r + 6 =0.

Now, we note by trial and error that —2 is a root of the above polynomial. So,
the polynominal can be rewritten as

(r+2)(r*+2r+3)=0.

Now

P +2r+3=0
gives us

—2++4-12
r =
2

or

r=—1+iV2.
Now, to find the eigenvectors, &, we note that for r = —2,

(A—rI)éE=0
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becomes
-3—(-2) 0 2 &

1 -1-(=2) 0 & | =0

-2 -1 -2 &3
or

{ £ 4+25=0
&1 +& =0 '

So, if we let & = 1, then x7; = 2 and xis = —2. Hence, the eigenvector
associated with r = —2 is

2

-2

1
For r = —1 + 4v/2, we have that

-3 — (-14+iV?2) 0 2 3
( 1 —1—(=14iV?2) 0 )(&):0
-2 -1 —1+14v2 &
. { (=2 —iV2)E,+ 26 =0
& —iV26 =0 '

Now, let & = 1. Then & = 4v/2 and

£ = w =—1+1iV2.
So, the solution associated with the complex eigenvalue r = —1 4+ i1/2 is
V2
x = 1 e(—1HiV2)t
( —1+14v/2 )
V2
= et 1 ) (cos(v/2t) + i sin(v/2t))
—1+iv2
—V/2sin(v/2t) + iv/2 cos(v/2t)
= et cos(v/2t) + i sin(v/2t) )
—cos(v/2t) — /2sin(v/2t) + i(v/2 cos(v/2t) — sin(v/2t))
—/25in(v/2t) V2 cos(v/2t)
= e cos(v/2t) ) + e~ ( sin(v/2t) )
—cos(v/2t) — v/2sin(v/2t) V2 cos(v/2t) — sin(v/2t)

So, the general solution is

2 —/2sin(v/2t) V2 cos(v/2t)
x=ce * ( -2 )—!—czet ( cos(v/2t) )—|—03et ( sin(v/2t) ) .
1 — cos(v/2t) — /2sin(v/2t) V2 cos(v/2t) — sin(v/2t)
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x = alx
-1 a )7

then as above, we need to find the eigenvalues, r, as follows:

7.6.13) Given

a—r 1

-1 a-r =0

(a—r)a=r)+1=0

(@ —71)2=-1
a—1r ==
r=axi.

For, r = o + 4, we find the eigenvector, &, from

(T8 e ) (8) =0

—i§ + & =0.
So, if we let & = 1, then & = i. Hence

£=(1>,

and so the solution for the case r = o« + ¢ is

. - <1>W

or

) [cost + isint]

cost +isint
i[cost + i sint]

cost+isint
—sint +2cost

cost oot sint
—sint cost
So, the general solution is

_ at [ cost ot [ sint
x=ac (—sint>+626 (cost)' (1)

Note that for any real «, the eigenvalues will always be complex. This means
that the solutions will always be some combination of sines and cosines. How-
ever, if a > 0, then e® — oo as t — oo (and € — 0 as t — —o0) meaning that
the solutions would blow up in time and if o < 0, e® — 0 and so the solutions
would decay in time. So o = 0 is the critical value. Fig. 1 is a phase portrait.
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@ (b) X2

@

Figure 1: (a) is a phase portrait for & > 0 and (b) is a phase portrait for o < 0.

7.6.28) Given

mu” + ku = 0,
if we let
1 =u and xy =u'
then
zy =u =1 and z, = u". (2)
So
mu” + ku =0

can be rewritten as
mxy + kxy =0

or
k

i

Ty = ——X1.

2 1
m

Now, using the above equation and Eqn. (2), we get our system of equations

or
{ x) =021 +

and so in matrix form
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(b) To find the eigenvalues, r, we have

0—r 1
L
or
4+ —=0

Now, for r = i\/g, we have that

(o_i

|
e 3R
—_

O—i\/g><2):0

—i\/Efl +& =0.
m

So, if we let & = 1, then & = z\/% Hence our eigenvector is

[z )

or

which gives us as a solution

_ ( cos(@t)%—isin(\/%t) )

- sin(\/%t) + icos(\/%t)

So, the general solution is

e [ BWVED o (mveD ).

(c) Note that since the general solution does not have an exponential in front
of the sines and cosines, the solutions are periodic (see Fig. 2.)

(d) From the general solution above, it is clear that

rl=1/—

is the natural frequency of the system.
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() (b)

Figure 2: (a) is a phase portrait for £, ¢; and ¢, set to various values and (b) is a
plot of z; and z, verses time for £ = 4.

2 Sec. 7.7

7.7.1) Given
(3 2
X'={, 5%

‘3—7" -2

the characteristic equation is

9 9 _,|=0

r B-r)(-2—-r)+4=0

r?—r—2=0
(r=2)(r+1)=0

r=2 and r = —1.

(%2 %) (8) e

&1 — 28 =0.

(3

For r = 2 we have

or

So, the first eigenvector is
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2
(1 _ . 2t
X Cc1€ ( 1 ) .

46 — 26 =0

“=(s)

1
@) — poet
X Coe ( 9 ) .
So, the general solution is

2 _ 1
x:0162t<1)+026 t<2>

and the fundamental matrix is
2¢2t ot
V= < et et ) )

To find @, we first need to find ¢; and ¢, such that the general solution satistfies

-3
(1) (2)- )

This gives us a system of equations

and the first solution is

For, r = —1, we have

and so

Hence, the second solution is

or

201+02:1
{01—1-202:0
or
2
cl—3an Cy = 3
So

2, (2\_ 1 _ (1
<=5 (1)-5(2)

satisfies the first initial condition. Now the second initial condition that must
be satisfied is
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which gives us

201+02:O
c1+2c =1
or 9
01:—3 and ¢y = 3
So

ol 2 2 ,(1
-3 (2)3()

satisfies the second initial condition. Hence

o — 2 (%) et — %e‘t -2 (%) et 4 2e7t
_ ) e 1 '

1 -1 4
xX=13 2 -1 |x
2 1 -1

the corresponding characteristic equation is

7.7.10) Given

1—r —1 4
3 2—r —-1|=0
2 1 —1—r
or
1-nEC-r)(-1=-r)+1]+[3(-1—-7r)+2]+4[3-2(2—-7)] =0
—r®+2r° +5r —6=0
(r+2)(—r*+4t-3)=0
(r+2)(=r+3)(r—-1)=0
r=-—2, r=3 or r=1.
For r = —2 we have
1-(-2) -1 4\ (&
3 2—(-2) -1 & | =0
2 1 -1-(-2) ) \ &
or

{ 31— & +45 =0
361 +45 - & =0

which gives us

52 :§3



SEC. 7.7

and . 4
&1 = 552 - 353 =&
So, the eigenvector associated with r = —2 is
-1
£ = 1
1

For r = 3, we have
{ —26 — &+ 46 =0
31 -8 —&=0.
So
&1=&
and
§o = —2& + 48 = 261

Hence, the eigenvector associated with r = 3 is

1
52 = 2
1
For r = 1, we have
& +4&=0
31+&—&6=0
which gives us
§o = 483
and . .
&L= —552 + 353 = —&;.
So

-1 1
x = cie” % 1 | +ce®| 2 | +czel
1 1

So,
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To find ®(¢), we use the formula ®(t) = ¥(¢)¥(#)~', and in this case t; = 0.

-1 1 -1
vO0)=| -1 2 4
1 1 1
So, we get:
-1/3 —-1/3 1
U0y t=| 1/2 0 1/2

~1/6 1/3 —1/2

—e 2t et et -1/3 -1/3 1
O(t) =v()T(0)" = e 2% 4det /2 0 1/2
e 2t et ¢t -1/6 1/3 —1/2
1,—2t ¢ 1,3t 1t  1,-2t _ 1.t —2t 4 1,3t | 1t
gel + e + @6 gle — _f —e 7+ ze” + g€
— _56—21& + 3t — get _§e—2t 4 4gt 2ty g3t 9pt
_%e_2t+%63t_%et _ge—2t+§et e—2t+%€3t_%et

7.7.13) We already did this in class. But let’s do this again here. Let W(t) be
any fundamental matrix for the system x’ = Ax. Then, the general solution
can be written as x(¢t) = ¥(t)c, where c is a vector of length n consisting of
arbitrary constants. Now, let the initial condition be x(t) = x° = ¥(t;)c.
Hence, ¢ = U(ty)~'x?, i.e.,

x(t) = U(t)¥(te) 'x°.

Therefore, ¥ (t)¥(ty) * is also a fundamental matrix for this system and satisfies
U(tg)W(te) ! = I. In other words, ®(t) = W(¢)¥(t) .

3 Sec. 7.8
7.8.5)
1 1 1
xX=12 1 -1 |x
0 -1 1
Let us first compute the eigenvalues.
1—r 1 1
2 1-r -1 |=1-=7)P-2-2(1-7)—(1-7)=0.
0 -1 1-r

This yields
0=r*-3r+4=(r+1)(r—2)?
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Hence, the eigenvalues of this matrix, say A, are r = —1 and r = 2 (double
root). For r = —1, we can compute the eigenvector £ as follows:
2 1 1 & 0
A+DHE=2 2 -1 &L =10
0 -1 2 & 0

From this, we have:

26 +&6&+8& = 0,

=& +28 =
So, we have: & = 2§, and & = —(& + &)/2. By setting & = 2, we get
&€ =(-3,4,2)". Thus,
3
xD =14 |e?
2

Now let us compute the eigenvector 7 corresponding r = 2.

-1 1 1 m 0
(A-2De=| 2 -1 -1 m | =10
0 -1 -1 s 0

From this, we have:

—m+n+n = 0,
—Te—nN3 =

Thus, adding these two, we get n; = 0, 7 = —n3. By setting 7o = 1, we get
ns = —1,and n = (0,1, —1)7. Hence

Now, it is easy to see that m is the only linearly independent eigenvector for
r = 2 since 7; = 0 is specified and 7, = —n3 must be satisfied. Thus, we need
to compute ¢ satisfying (A — 2I){ = n. This is written as

11 1)\ /G m 0
2 1 -1 |la|=[m]|=]|1
0 -1 -1)\¢ s 1

From this, we get:

-G +G+G = 0,
—CG—G = -1
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By adding these two equations, we get (; = 1. Also we get (, + (3 = 1. Setting
¢ =0, we get (3 =1. So, ¢ = (1,0,1) + kn, where k is an arbitrary constant.
Note that (A —2I)¢ = 0 since (A — 2/)np = 0. Thus, we can set £ = 0. Hence,

we have
0 1
x®) = nte® 4 ¢ = 1 |te®+| 0 |e*
-1 1

Finally, we can write the general solution as:

-3 0 0
x(t) = e1xWM teexP 3% = ¢ 4 e l+ey 1 | e¥+cy 1 | te? +
2 -1 -1

7.8.8) Given

_3
x' = % X,
T2

we find the eigenvalues of the matrix in our usual way as follows:

N[00 | o

3
—_—— — 7‘ —
‘ s 12 =0
2 2
or
(37 G=r)+(3) =
2 2 2
4+ 2r+1=0
(r+1)*=0
r=-—1.
Now, to find the eigenvector, &, associated with the eigenvalue r = —1, we look
at the system
<_g_§_1) X 5 )(&)ZO
—5 s — (1) &o
or 5 5
—— =& =0
251 + 252
&1 =6

So, the eigenvector is

Hence, one of the solutions is

1
(D — et
X cie ( 1 ) .
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Since we have only one eigenvalue and more importantly, only one eigenvector
associated with that eigenvalue, we assume that the second solution has the
form

x? = ¢tet + ne "

Now, to find ), we need to solve the system of equations

(A-rIin=¢
Or (o ) ()= (8)

VS
I
[ SISV NI
NGO [
N~
S
I 3
N =
N~
Il
7N

This gives us

3 3
—5771 +§772 =1
2
Ny = §+771-

So, if we let i1 = k, for some constant k, then 7, = % + k. In vector form, this
is
0 1
3
for some constant k. Hence, our second equation is
x@ = Ste*t + ne’t

- () ()-

Note that the last term is just a multiple of the first solution. So, we can ignore
it in the second solution, i. e.

x? = ( ! )tet—i—(g)et.
1 )
3

So, our general solution is

X = clx(l) + ch(2) = cle_t < 1 ) + czte_t ( } ) + cge_t (

Now, the initial condition

wivn O
N—

gives us
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or
61:3
Cl+§02:—1 '

c; =3 and ¢y, = —6.

So

Therefore, the solution to our initial value problem is

7.8.17) Given

1 1 1
x = 2 1 —1 |x
-3 2 4

(a) The characteristic equation to find the eigenvalues, r, is

1—r 1 1
2 1—r —1(=0
-3 2 4—r
or
A=A =r)@E-r) = (2] -2 -7) =3+ 4 - (=3)1-7r)]=0
—r 4+ 6r2—12r+8=0
(r—2)(—r?*+4r —4) = 0.
Now
—r*+4r—4=0
gives us
r’—4r+4=0
(r—2*=0
r=2.

So r = 2 is a triple root of the characteristic equation.
Now to find the eigenvector, &, we have
1-2 1 1 &

2 1-2 -1 & | =0
-3 2 4-2)\ &

14
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or

&1 +&+86=0
26 -&—&=0 -
Note that the third equation is just a linear combination of the first two and so

does not contribute anything. This, of course, will always be the case because
of the way we chose r. Now, if we add the two equations, we get

& =0
which gives us
+& =0
or
& = —&3.
So, if we let £3 = —1, then our eigenvector is
0
£ = 1
-1

Let us denote this vector as €1 for future reference.
(b) Using the information in (a), our first solution is
0

x(1) = g2 — 1| e
—1

(c) To find our second solution, we assume it has the form
x? = ¢te? + ne?.

So, to find 1, we look at the equations

(A-rIin=¢
or
1-2 1 1 m 0
92 1-2 -1 n | = 1
3 2 4-29 s —1

This gives us
—th+mn+n=0
2 —mp—m3 =1

Adding the two equations gives us

7’]1:1.
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So
n=1-—mn;s.
Hence, we get
1 0
n=\|1|+k 1
0 -1
This means that our second solution is
x? = Ete?t + ne*
0 1 0
= 1 |te?+ |1 | +k 1 |e*
-1 0 -1

and since the last term is just a multiple of the first solution, x(!), we can drop
that term and get

0 1
x® = 1 [te®+ | 1 |e*].
-1 0

(d) Now, to find the third solution, we assume it to be of the form

t2
x®:§5ﬂ+nw”+@%
This means that ¢ must satisfy

(A-rD)¢=mn

1-2 1 1 (1 1
2 1-2 -1 G |=|1+Ek |.
-3 2 4-2 (3 —k
The above gives us

20— G —@G=1+k

and adding the two equations gives us

{ G+ G+G=1

So
<3:1+Cl—<2:3+k—C2

Hence by setting (5 = ¢, where £ is arbitrary, we have

2+ k 9 1 0
¢ = el=10|+k[1]+¢
34+k—1 3 0 ~1

—_
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Again by ignoring the second and third terms (i.e., setting £ = £ = 0), the third
solution becomes

t2
x®) = 656% + nte?t + ¢e*t
2 0 1 2
= 56% 1 |+t 1 |+ 0
-1 0 3

(e) Since ¥(t) = [x(l) | x(?) |x(3)], we have:
0 1 t+42

Ut)y=e*| 1 t+1 L 44

-1 —t —£43
(f) Since T'= [£ | n [ ],

T = 1

S ==
W O N

We can compute T-! and get:
T7'=| 3 -2 =2

The matrix J is written as
0
1

N =

J=|0
0 0 2

You can verify that J = T7*AT and A = TJT . This sandwich is called the
Jordan form of A. As we can see from this example, given any matrix A of nxn,
we may not be able to compute the eigenvalue decomposition, but we can always
write A by its Jordan form. If A has all distinct n eigenvalues or A has some
repeated eigenvalues, but the algebraic multiplicity of each distinct eigenvalue
is the same as its geometric multiplicity, then the Jordan form reduces to the
eigenvalue decomposition.

7.7.19) Given

(a)

(a2 2
- Lo
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A% 2 Al
— Lo » 0 A
(A 3N
— Lo x

A
A AW
~ Lo 0 A
AL AN

0 M

(b) To prove
A" pArTt
n __
first note that for n = 2, it is true from part(a) above. Now, assume it is true
for n. Then we need to show that it is true for n + 1. For n + 1, we have

A"l = A"A
R W
- 0 AT 0 A
/\n-l—l (n+ 1)/\n
0 )\n—l—l .

So, by induction we are done.

(c)

exp(At) = I+> o
n=1 :

o0 4n P n—1
<15 )

1+Zn 1’5"".)\" 04> :.n)\" 1
1+2n L EAm

_ ( |
_ (0 t+2°°)\tn|n)\" )
[
[

n—1 _
At ( + Zn 2 'fz 1)! An !
0 e)‘t

At te)\t
0 6’\t )
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Note in the above that since the sum is to oo, if we let
n*=n-—1,

then

*

e} t'n,fl 00 i
>

= (n—1)! n (n*)!

A=y A"

19



