Math 22B, Homework #1

§1.1

#1: Draw a direction field for the equation y' = 3 = 2y.
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#13: Draw a direction field for y' = y%.
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#15: a)To set up the differential equation let A(t) =”The amount (in grams) of chemical in
the tank at time ¢”. Then we have the following:

dA
o Rate of change of the amount of chemical in the tank.
Rate of Change = (Rate In) — (Rate Out)
Rate In = .01-- x 3009
gal min
Rate Out = @i X 3009—@[
108 gal min

thus, we have the following differential equation:

dA A(t
4 _ 50 A0

- =31 = T57) = (3x107)(10" — A(®))

SO dA 4 4
= (3x1079(10° — A1)

b)From the direction field below, we see that after a long time there will be 10 kg of chem-
mical in the tank, regardless of the I.C.
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#22: Draw a direction field for ¢ = ¢ + 2y.
Yy Yy

y'=t+2y

§1.2

#1a: Solve the following:

We use separation of variables to write:

=dt

dy

then substitute with u = 5 — y and integrate:

Inb—-—y)=-t+C

exponentiating yields:

5—y201€_t
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thus, solving for y(¢) and C; we get

(yo —5)e " +5

y(t)

Some sample solutions to the above ODE:

-y+5

y’:
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y(O) =%

Again we use separation of variables to solve the problem. however this time the appropriate

substitution when integrating is u = 2y —

#2b: Solve the following

5. So we get:

=dt

dy
2y — 5

In(2y—5)=2t+C

5
2

Yy = 0262t +

thus after solving for C; we get

5
ot | °
)e + 5

y(t) = (yo —

Some sample solutions to the above ODE:
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#3: Solve the following:

dy
dt

We use separation of variables to write:

a,b>0; y(0)=yo

= —ay + b;

=dt

dy
—ay + b

then substitute with u = —ay + b and integrate:

In(—ay +b) = —at + C

exponentiating yields:

—ay+b=Ce™

thus, solving for y(¢) and C; we get

(yo — b)e™* + b

y(t)

274 order, linear.

#1: t2y" + ty' + 2y = sint

§1.3
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To show that y(¢) is a solution to the given equation we first rewrite y(¢) then differentiate:

t ¢
y(t) = e / eV ds+ e’ =e (/ e ds + 1)
0 0

d t2 ¢ 2
! —S
yt:—(e (/e ds+1)>
)=~ i
d,p b e d b
—£(e)(/oe ds+1>+e %</Oe ds+1

t
= 2te (/ e ds + 1> + () ()
0

by the Fundamental Theorem of Calculus. Thus we have that:

thus

t
y'(t) = 2te’ (/ e ds + 1> +1=2ty(t)+1
0
Now, substituting into the equation above we get:
y —2ty=(2ty+1)—2ty=1

Thus the given y(¢) is a solution.

#18: Determine the values of r such that y = e is a solution to:
y" —3y" +2y' =0
Differentiating y = e and substituting we get:
rie™ — 3rfe™ 4+ 2re™ = (r* = 3r? +2r)e" =0
but e # 0 for all ¢, thus we have that:
(=3 +2r)=r(r—1(r—2)=0

Thus, if y = €™ is a solution, then r = 0, 1, 2.

#20: Determine the values of r such that y =", > 0 is a solution to:
t2y" — 4ty' + 4y = 0
As before we differnetiate and subbstitute to get:
r(r—1)t" —4rt" + 4" = (r(r—1) —4r+4)t" =0
but again t;0 so

rir—1)—dr+4=r>-5r+4=(r—-1)(r—4)=0
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Thus r =1, 4.

F#21: Uy + Uyy + Uy, 274 order, linear.
#24: up + uty = 1+ Ugy 274 order, non-linear.



