§2.1

#3 Draw a direction field for the equation \(y' + y = e^{-t} + 1, \ y(0) = y_0 \)

![Direction field diagram](image)

We can solve the ODE using an integrating factor. If we set \(\mu(t) = e^t \) and multiply both sides of the equation by \(\mu \) we get:

\[
y'e^t + ye^t = (te^{-t} + 1)e^{-t} = t + e^t
\]

thus the new equation is:

\[
y'e^t + ye^t = (ye^t)' = t + e^t
\]

So, after integrating we get:

\[
ye^t = \frac{t^2}{2} + e^t + C
\]

Then we solve for \(y(t) \) to get

\[
y(t) = \left[\frac{t^2}{2} + (1 - y_0) \right] e^{-t} + 1
\]

since \(C = 1 - y_0 \).

#13 Solve the IVP \(y' - y = 2te^{2t}, \ y(0) = 1 \) using an integrating factor. Again let \(\mu(t) \) be the integrating factor and choose \(\mu(t) = e^{-t} \). Multiplying the equation by \(\mu \) then integrating yields:

\[
ye^{-t} = \int (2te^{2t})e^{-t}dt = 2 \int te^t dt
\]
but
\[\int te^t \, dt = te^t - e^t + C \]
so we have
\[ye^{-t} = 2te^t - 2e^t + K \]
where \(K = 2C \). Solving for \(y(t) \) gives:
\[y(t) = 2te^{2t} - 2e^{2t} + Ke^t \]
Then, using the initial condition to solve for \(K \) (\(K = 0 \)) we get:
\[y(t) = 2te^{2t} - 2e^{2t} \]

#29: Consider the IVP \(y' - \frac{3}{2}y = 3t + 2e^t \), \(y(0) = y_0 \). Find the value of \(y_0 \) that separates solutions that grow positively as \(t \to \infty \) from those that grow negatively. Again we use an integrating factor to solve the IVP in terms of \(y_0 \) then take limits. The integrating factor is \(\mu(t) = e^{-\frac{3}{2}t} \). Then if we let \(g(t) = 3t + 2e^t \) and using the formula:
\[y(t) = \frac{1}{\mu(t)} \int g(t)\mu(t)dt \]
we get:
\[y(t) = Ke^{\frac{3}{2}t} - 4e^t - 2t - \frac{4}{3} \]
where \(K = y_0 + \frac{16}{3} \). Now if we let \(t \to \infty \) we get:
\[\lim_{t \to \infty} y(t) = \begin{cases} +\infty & K > 0 \\ -\infty & K \leq 0 \end{cases} \]
Thus we have:
\[\lim_{t \to \infty} y(t) = \begin{cases} +\infty & y_0 > \frac{16}{3} \\ -\infty & y_0 \leq \frac{16}{3} \end{cases} \]

#35: Consider the general 1st order, linear, ODE: \(y' + p(t)y = g(t) \).
\[y' + p(t)y = g(t) \] \hspace{1cm} (1)
a) If \(g(t) \equiv 0 \) then we have \(y' + p(t)y = 0 \). This equation is easily solved using separation of variables. We get:
\[y(t) = Ae^{-\int p(t)dt} \]
where \(A \) is a constant.
b) If \(g(t) \neq 0 \) we look for solutions of the form \(y(t) = A(t)e^{-\int p(t)dt} \) where the coefficient of the exponential, \(A(t) \), is no longer a constant, but a function of \(t \). If we differentiate we get:
\[y'(t) = A'(t)e^{-\int p(t)dt} - A(t)p(t)e^{-\int p(t)dt} \]
subsituting this form into (1) we get:
\[y' + py = (A' e^{-\int p\,dt} - A e^{-\int p\,dt}) + pA e^{-\int p\,dt} = g \]
or
\[A'(t) = g(t)e^{\int p(t)dt} \]
c) Solving the above equation for \(A(t) \) we get:
\[A(t) = \int g(t)e^{\int p(t)dt} \, dt \]
thus if we substitute this back into the assumed form of \(y(t) \) we have:
\[y(t) = A(t)e^{-\int p(t)dt} = e^{-\int p(t)dt} \int g(t)e^{\int p(t)dt} \, dt \]
Now if we let \(\mu(t) = e^{\int p(t)dt} \) then the above equation becomes:
\[y(t) = \frac{1}{\mu(t)} \int g(t)\mu(t) \, dt \]
which is the general solution to (1) obtained by using an integrating factor.

\[\text{§2.2} \]
\[\#5: \text{Solve the ODE } y' = \cos^2 x \cos^2 2y. \text{ We use separation of variables and get:} \]
\[\frac{dy}{\cos^2 2y} = \cos^2 x \, dx \]
thus integrating both sides leaves:
\[\frac{1}{2} \tan 2y = \int \cos^2 x \, dx = \frac{1}{2} \int (\cos 2x + 1) \, dx \]
(Note the use of the identity \(\cos^2 x = \frac{1}{2} (\cos 2x + 1) \). Remember it!) After integrating the left hand side we have:
\[\tan 2y = \frac{1}{2} \sin 2x + 2x + K \]

\[\#8: \text{Solve the ODE } \frac{dy}{dx} = \frac{x^2}{y^2+1}. \text{ Again we use separation of variables to get:} \]
\[(y^2 + 1) \, dy = x^2 \, dx \]
Integrating yields:
\[\frac{y^3}{3} + y - \frac{x^3}{3} = K \]
#12: Solve the IVP \(\frac{dr}{d\theta} = \frac{r^2}{\theta} \) \(r(1) = 2 \). Separating variable leaves:
\[
\frac{dr}{r^2} = \frac{d\theta}{\theta}
\]
Integrating and solving for \(r(\theta) \) gives:
\[
 r(\theta) = -\frac{1}{\ln \theta + K}
\]
Solving for the initial condition gives \(K = -\frac{1}{2} \), thus we have:
\[
 r(\theta) = -\frac{1}{\ln \theta - \frac{1}{2}}
\]

The interval of definition is \(0 < \theta < \sqrt{e} \)

#23: Solve the IVP \(y' = 2y^2 + xy^2 \) \(y(0) = 1 \). The problem is non-linear, so the only technique we have learned that can be applied is Separation of Variables. Thus we separate:
\[
 \frac{dy}{y^2} = (2 + x)dx
\]
integrate:
\[- \frac{1}{y} = \frac{x^2}{2} + 2x + K\]
and finally solve for \(y(x)\) with the given initial conditions:
\[y(x) = -\frac{2}{x^2 + 4x - 2} \quad (-2 - \sqrt{6}) < x < (-2 + \sqrt{6})\]

Then, to find the minimum we differentiate and find the critical points to get \(x = -2\). This is in the domain of our solution, but we must check that it is a local-min. But \(y'(-3) < 0\) and \(y'(-1) > 0\), so \(x = -2\) is a local-min. Moreover, we have:
\[\lim_{x \to (-2 \pm \sqrt{6})} = +\infty\]
so \(x = -2\) is an absolute-min.

\[\frac{dA}{dt} = \text{Rate of change of the amount of chemical in the tank.}\]

Rate of Change = (Rate In) - (Rate Out)
\[\text{Rate In} = \frac{lb}{gal} \times \frac{gal}{min}\]

\section{§2.3}
\#4: To set up the differential equation let \(A(t) = \text{The amount (in poundss) of chemical in the tank at time } t\). Also in this problem the volume of solution is not fixed, so let \(V(t) = \text{The volume (in gallons) of solution in the tank at time } t\). Then we have the following:
Rate \ Out = \frac{A(t) \ lb}{V(t) \ gal} \times 2\frac{gal}{min}

The term \ \frac{\ A(t)}{V(t)} \ is \ the \ concentration \ of \ the \ solution \ leaving \ the \ tank. \ But \ V(t) \ is \ given \ as \ V(t) = 200 + t, \ so:\n
Rate \ Out = \frac{A(t) \ lb}{200 + t \ gal} \times 2\frac{gal}{min}

thus \ we \ have \ the \ following \ differential \ equation:

\frac{dA}{dt} = \left(1 \frac{lb}{gal} \times 3\frac{gal}{min}\right) - \left(\frac{A(t) \ lb}{200 + t \ gal} \times 2\frac{gal}{min}\right) = 3 - \frac{2A}{200 + t}

so \ the \ IVP \ we \ must \ solve \ is:

\frac{dA}{dt} + \frac{2A}{200 + t} = 3 \quad A(0) = 100

To solve \ this \ we \ use \ and \ integrating \ factor \ \mu(t) = e^{\int\frac{2}{200+t}dt} = (200 + t)^2. \ Thus \ if \ we \ take \ g(t) = 3 \ the \ general \ solution \ of \ the \ above \ equation \ is:

\begin{align*}
A(t) &= (200 + t)^{-2} \int 3(200 + t)^2dt \\
&= \frac{3}{(200 + t)^{-2}} \left(\frac{1}{3} (200 + t)^3 + C \right)
\end{align*}

so

A(t) = t + 200 + \frac{K}{(200 + t)^2} \quad \text{where} \ K = 4 \times 10^6

At \ t = 300, \ A(t) = 340.
A' = 3 - (2 A)/(200 + t)

A_0 = 100