Math 22B, Homework #3 1

§2.4
#1:Determine and interval in which a solution to the IVP is guaranteed to exist without
solving the IVP.

(t—3)y +In(t)y = 2¢ y(1) =2

First we put the ODE into standard form:

,, In(t) 2t

-3~ (-3

then we see that p(t) = %, while g(t) = 5%5. Now, p(t) = (l:_(?) is continuous on the

intervals I,y = (0,3) and I, = (3,+00) while g(t) = (i—%) is continuous on the intervals

Iy = (—00,3) and I = (3,+00). Thus we see that both p(t) and g(¢) are continuous on
I, and I, = I». However, the initial condition is at ¢ = 1,y(¢) = 2; t = 1 is in the interval

I,; = (0, 3), thus we are guranteed a solution on the interval I,,; = (0, 3).

#4:Determine and interval in which a solution to the IVP is guaranteed to exist without
solving the IVP.
(4 — )y + 2ty = 3t%; y(=3)=1

First we put the ODE into standard form:

ot 3t2

v Ll ey

This time we see that bot p(t) and g¢(¢) are continuous on the same domains, i.e. [} =
(—o00,—-2),I, = (—2,2), and I3 = (2,—00). So, since t = —3 € I} = (—o0, —2) we have a
guaranteed solution on I; = (—o0, —2).

#5:Determine and interval in which a solution to the IVP is guaranteed to exist without
solving the IVP.
(4 — )y + 2ty = 3% y(1) = -3

This problem is the same as #4 except that the initial condition has changed. So we note
that t =1 € I, = (—2,2) so a solution is guaranteed on the interval I, = (-2, 2).

#8:State the region where the hypotheses of Theorem 2.4.2 are valid for the following ODE.

V= VI= TP

In this case f(t,y) = /1 — (2 + y?) which is continuous throughout the unit-disc in the
(t,y) plane. Furthermore:
of Y

oy /1- @+
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so we see that % is continuous everywhere in the unit-disc, except on the boundary. Thus

the hypotheses of Theorem 2.4.2 are satisfied on {(t,y) : t* + y* < 1}

#9:State the region where the hypotheses of Theorem 2.4.2 are valid for the following ODE.

,_ Injty]
1—12—1y2
Here we have In |ty
n |ty
ty) = — "
and
af 1 In |ty|

ay  y(l——y) -y
Thus we see that these are continuous on the set {(¢,y) : t # 0,y # 0 and (t* — y?) # 1}

#15: Solve the following IVP and determine how the interval in which the solution exists
depends on the initial value.

Y +y’ =0 y(0) = %o
Separating variables and integrating we get:
2 _ 1
2L+ K

1
y3°

Y

Solving for the intial condition gives K = Substituting this back into the equation and
simplifying we get:

Y

) =40
y(t) =+ 22t + 1

Since y2 > 0 we see that the above is defined as long as (2y2t + 1) > 0. Thus our interval on
which the solution exists is ¢ > —#.
0

#22:Explain why the existence of the two solutions y; () = 1 —1¢ and y»(t) = —% to the IVP

, 4 (P4 4dy)s
— 5 :

y(2) = -1

does not contradict Theorem 2.4.2.

Theorem 2.4.2 guarantees a unique solution for every point in the region y > —% The
point (-1,2) does not satisfy this property, so no unique solution is guaranteed. c)If we let
y = ct + ¢ where c is some constant. Then we note that 3’ = ¢ furthermore:

—t+ (P +4y)T  —t 4 (At + )3
2 B 2
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and
b (P A(ct+A))E b+ (B Act+ 4D —t+[(E+20)7)

2 2 2

thus when we take /(¢ 4+ 2¢)? we require that ¢ > —2c so that we can only take the positive
square root, to get:

1
(24 4y) —tH [+ 2077
c=y = 5 = 5 =c

Obviously for ¢ = —1 we get y;(t) = 1 — ¢, and trying to solve for ¢ such that y,(t) = —& =
ct + ¢® we get that t = —2¢, thus there is no constant ¢ such that —% =ct+ .

#24:Show that if y = ¢(¢) is a solution to y' + p(t)y = 0 then y.(t) = co(t) is also a
solution.

pf:

Let y.(t) be as above. Then y.(t) = [c¢(t)] = c#'(t). Substituting into the equation we get:

Y+ p)ye = cd' +p(t)ed = (¢ + p(t)d) =¢-0=0

Thus y.(t) = ch(t) is a solution.

§2.5
#3:Show the graph of f(y) versus y and classify the critical points.

Y =yly—1)(y —2); Yo > 0

1.5

0.5+

-0./5¢

Thus we see that the equilibrium points are y =0, y = 1, y = 2 and from the image below
we see that y = 0, and y = 2 are unstable, while y = 1 is stable.
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y'=yly-1)y-2

y,=3/2
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#5:Show the graph of f(y) versus y and classify the critical points.

—o¢ < Yg, +00

0, and from the following image we

Thus we see that the only equilibrium point is y

deduce that it is a stable point.
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y'=exp(-y)-1
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#7:Consider the ODE:

k>0

y' = k(1 —y)%
Notice that y = 1 is an equilibrium point, but 3" > 0 for all y # 1, as can be seen by the

following graph:

25¢

20}

15;

10}
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#22:Consider the following ODE which is an approximate model for the rate of growth of
an infected population:

dy

pn =ay(l—y); y(0) = yo, >0

The equilibrium points are y = 0 and y = 1. As can be seen from the following graph y =0
is unstable while y = 1 is stable.

-1 1 2 3 4

-8t

To solve this equation we separate variables:
dy
y(1—y)

then we must integrate. The left hand side requires that we use partial-fractions, that is we
assume that:

= adt

1 A B

- =4
yd—-y) ¥y 1-y
and then solve for A and B. Doing this we get:

In <L> =at+c
-y

Solving for y(t) with the IC y(0) = yo we get:

B yoeat
N )

Notice that lim; , y(t) = 1. A few solutions are plotted in the figure below. Note that here
the only solutions with a “real” interpretation are those corresponding to 0 < yy < 1 since
y(t) represents the proportion of the population infected at time ¢.
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y'=y(ld-y)
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