§3.1 \#1:Find the general solution of

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

Solution We will guess that the solution has the form $y=e^{r t}$. Thus, if we differentiate twice we get:

$$
r^{2} e^{r t}+2 r e r t-3 e^{r t}=0 \longrightarrow r^{2}+2 r-3=0
$$

since $e^{r t} \neq 0 \quad \forall t$. This implies

$$
r^{2}+2 r-3=0 \longrightarrow(r-1)(r+2)=0
$$

thus we have the following:

$$
y(t)=A e^{t}+B e^{-2 t}
$$

as the general solution.
\#6:Find the general solution of

$$
4 y^{\prime \prime}-9 y=0
$$

We calculate the characteristic equation to be

$$
4 r^{2}-9=0
$$

Thus the general solution becomes

$$
y(t)=A e^{\frac{3}{2} t}+B e^{-\frac{3}{2} t}
$$

\#15:Find the solution to the IVP

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0 \quad y(1)=1, y^{\prime}(1)=0
$$

The characteristic equation of the above is:

$$
r^{2}+8 r-9=0
$$

Thus the roots are $r=1,-9$. Thus the general solution to the equation is :

$$
y(t)=A e^{t}+B e^{-9 t}
$$

Forcing this to satisfy the IC we get:

$$
y(t)=\frac{9}{10} e^{t-1}+\frac{e^{9-9 t}}{10}
$$

\#18:Find a differential equation whose solution is

$$
y(t)=c_{1} e^{-\frac{t}{2}}+c_{2} e^{-2 t}
$$

Solution: If a $2^{\text {nd }}$ order ODE had the solution above then the roots of the characteristic equation would have roots $r=-\frac{1}{2},-2$ Thus the characteristic equation becomes

$$
\left(r+\frac{1}{2}\right)(r+2)=0
$$

Thus we have the folowing ODE:

$$
2 y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

\#23: Find the value of α for which the solutions to the following ODE go to zero; remain unbaounded.

$$
y^{\prime \prime}-(2 \alpha-1) r+\alpha(\alpha-1) y=0
$$

Thus the roots of the characteristic equation are $r=\alpha,(\alpha-1)$, so the general solution of the ODE becomes

$$
y(t)=A e^{\alpha t}+B e^{(\alpha-1) t}
$$

Thus as long as $\alpha<0$ then the solurions go to zero and if $\alpha>0$ then the solution remains unboundend as $t \rightarrow \infty$.

§3.2

\#1:Find the Wronskian of $y_{1}=e^{2 t}$ and $y_{2}=e^{-\frac{3}{2} t}$.

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

Plugging y_{1} and y_{2} into the above we get:

$$
W\left(y_{1}, y_{2}\right)=-\frac{7}{2} e^{\frac{t}{2}}
$$

\#2:Find the Wronskian of $\cos t$ and $\sin t$.
$\overline{\text { By }}$ above $W(\cos t, \sin t)=\cos ^{2} t+\sin ^{2} t=1$.
\#4:Find the Wronskian of x and $x e^{x}$.
$\overline{\text { By }}$ above $W\left(x, x e^{x}\right)=\left(x e^{x}+x^{2} e^{x}\right)-x e^{x}=x^{2} e^{x}$.
\#11: Find the longest interval for a unique, twice differentiable solution to the IVP

$$
(x-3) y^{\prime \prime}+x y^{\prime}+(\ln |x|) y=0, \quad y(1)=0, \quad y^{\prime}(1)=1
$$

Solution
By Theorem 3.2.1 the ODE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ has a unique soltuion on any interval where p, q, g are continuous. Thus we put the above IVP into the proper form:

$$
y^{\prime \prime}+\frac{x}{x-3} y^{\prime}+\frac{\ln |x|}{x-3} y=0
$$

Then we have:

1. $p(t)=\frac{x}{x-3}$ which is continuous on $(-\infty, 3) \cup(3,+\infty)$.
2. $q(t)=\frac{\ln |x|}{x-3}$ which is continuous on $(-\infty, 0) \cup(0,3) \cup(3,+\infty)$.

But $t_{0}=1$ thus the longest interval on which a unique twice differentiable solution is guaranteed to exist is $I=(0,3)$.
\#16: Can $\sin t^{2}$ be a solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on an interval containig $t=0$?
Solution
If $\sin t^{2}$ is a solution to the ODE then the equation holds for all t, particularly at $t=0$. However

$$
\sin ^{\prime \prime} t^{2}+p(t) \sin ^{\prime} t^{2}+\left.q(t) \sin t^{2}\right|_{t=0}=2 \neq 0
$$

Thus $\sin t^{2}$ can not be a solution to the ODE on any interval containg $t=0$.
\#22:Find a fundamental set of solutions u_{1} and u_{2} to the ODE

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

with initial point $t_{0}=1$ such that we have:

$$
\left.\begin{array}{lc}
u_{1}\left(t_{0}\right)=1 \\
u_{1}^{\prime}\left(t_{0}\right)=0
\end{array} \quad ; \quad \begin{array}{c}
u_{2}\left(t_{0}\right)=0 \\
u_{2}^{\prime}\left(t_{0}\right)=1
\end{array}\right\} \quad t_{0}=1
$$

Solution
The characteristic equation of the ODE is:

$$
r^{2}+4 r+3=0 \longrightarrow(r+3)(r+1)=0 \Rightarrow r=-1,-3
$$

Thus we get a fundamental set of solutions:

$$
\left\{\begin{array}{l}
y_{1}=e^{-t} \\
y_{2}=e^{-3 t}
\end{array}\right.
$$

However, y_{1} and y_{2} do not satisfy the initial conditions we are looking for, but since they form a fundamental set we can use them to find the desired u_{1} and u_{2}. We proceed as follows: Let

$$
\left\{\begin{array}{l}
u_{1}=A y_{1}+B y_{2} \\
u_{2}=C y_{1}+D y_{2}
\end{array}\right.
$$

Now solve for the initial conditions. We get the two linear systems:

$$
\left[\begin{array}{rr}
e^{-1} & e^{-3} \\
-e^{-1} & -3 e^{-3}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] ;\left[\begin{array}{rr}
e^{-1} & e^{-3} \\
-e^{-1} & -3 e^{-3}
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

To solve these we calculate the inverse of the matrix:

$$
\left[\begin{array}{rr}
e^{-1} & e^{-3} \\
-e^{-1} & -3 e^{-3}
\end{array}\right]^{-1}=-\frac{1}{2} e^{4}\left[\begin{array}{rr}
-3 e^{-3} & -e^{-3} \\
e^{-1} & e^{-1}
\end{array}\right]
$$

Thus we get:

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} e \\
-\frac{1}{2} e^{3}
\end{array}\right] ;\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} e \\
-\frac{1}{2} e^{3}
\end{array}\right]
$$

So that for u_{1} and u_{2} we get:

$$
\left\{\begin{array}{l}
u_{1}(t)=\frac{3}{2} e^{1-t}-\frac{1}{2} e^{3-3 t} \\
u_{2}(t)=\frac{1}{2} e^{1-t}-\frac{1}{2} e^{3-3 t}
\end{array}\right.
$$

\#25:Determine if $y_{1}=x$ and $y_{2}=x e^{x}$ form a fundamental set of solutions for

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0
$$

Solution
$W\left(x, x e^{x}\right)=x^{2} e^{x}$, so if we evaluate $W(1)$ we get $e \neq 0$. Thus $y_{1}=x$ and $y_{2}=x e^{x}$ form a fundamental set of solutions.

§3.3

\#2 Determine if $f=\cos 3 \theta$ and $g=\cos ^{3} \theta-3 \cos \theta$ are linearly independent or linearly dependent.
Solution
$\overline{W(f, g)}\left(\frac{\pi}{6}=-\frac{27 \sqrt{3}}{8} \neq 0\right.$. Thus f and g are linearly independent.
\#9Suppose that two functions have $W\left(y_{1}, y_{2}\right)(t)=t \sin ^{2} t$. Are the linearly independent of linearly dependent?
Solution
$W\left(\frac{\pi}{2}\right)=\frac{\pi}{2} \sin ^{2} \frac{\pi}{2}=\frac{\pi}{2} \neq 0$. Thus by theorem 3.3.1 the functions are linearly independent.
$\# 10 W(t)=t^{2}-4$. To determine if y_{1} and y_{2} are linearly independent we evaluate $W(0)=$ $-4 \neq 0$.Thus by theorem 3.3.1 the functions are linearly independent.

