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§3.3
#14:(a) To see that any vector in the plane can be written as a linear combination of

î + ĵ and î − ĵ we just need to show that for all a, b we can find c1 and c2 such that
c1(̂i + ĵ) + c2(̂i− ĵ) = âi + bĵ. But this is clearly true since the equation can be written in
matrix form as: [

1 1
1 −1

] [
c1

c2

]
=

[
a
b

]
and this clearly has a solution for all a, b since the matrix has det = −2.
(b) If we suppose that ~x = x1î+ x2ĵ and ~y = y1î+ y2ĵ are linearly independent then we can
write any ~z = z1î+ z2ĵ as c1~x+ c2~y. This can be seen similarly to part (a). If we write the
corresponding matrix system we get:[

x1 y1

x2 y2

] [
c1

c2

]
=

[
z1

z2

]
but ~x and ~y are linearly independent so x1y2 − x2y1 6= 0 thus the system has a solution.

#16: Using Abel’s Theorem we see that

W (y1, y2)(t) = c exp

[
−
∫
p(t)dt

]
In this case

p(t) =
sin t

cos t

Thus
W (t) = cos t

#19: Suppose that p(t) is differentiable, also, suppose that y1, y2 are solution to the equation

[p(t)y′]
′
+ q(t)y = 0

Then to find the Wronskian we simplify the abpove equation and use Abel’s Theorem. We
get:

p(t)y′′ + p′(t)y′ + q(t)y = y′′ +
p′

p
y′ +

q

p
y = 0

Now by Abel’s Theorem

W (t) = c exp

[
−
∫
p′

p
dt

]
which gives

W (t) =
c

p(t)
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#24: Suppose that y1 and y2 are two solutions to some ODE such that y1(t0) = y2(t0) = 0
then we see that W (t0) = 0. Thus be Theorem 3.3 y1 and y2 cannot be a fundamental set
of solutions to the ODE since if they were then the Wronskian would be non-zero.

#28: Consider the functions f(t) = t2|t| and g(t) = t3. On the interval 0 < t < 1 f = g so
they are linearly dependent. Also, on −1 < t < 0 f = −g so they are linearly dependent,
but on −1 < t < 1 the functions are linearly independent since they have opposite sign on
−1 < t < 0 and the same sign on 0 < t < 1.

§3.4
#3: eiπ = cos π + i sin π = −1
#9:Consider the differential equation

y′′ + 2y′ − 8y = 0

To find the general solution we assume a solution of the form y = ert and get the characteristic
equation:

r2 + 2r − 8 = 0

and get the roots r = −4, 2. Thus the general solution is

y = Ae−4t +Be2t

#12:Consider the ODE:
4y′′ + 9y = 0

To find the general solution we assume a solution of the form y = ert and get the characteristic
equation:

4r2 + 9 = 0

and get roots r = ±3
2
i. So for a solution we would get

y = Aei
3
2
t +Be−i

3
2
t

but this would give complex solutions. Using Euler’s formula we see that cos 3
2
t and sin 3

2
t

are linear combinations of the above and that they are linearly independent. Moreover they
are real valued, so we set the general solution to the original ODE to:

y = A cos
3

2
t+B sin

3

2
t

where A and B are real.

#19:Consider the IVP

y′′ − 2y′ + 5y = 0 y(0) = 1, y′(0) = 0
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To solve the problem we look at the characteristic equation r2− 2r+ 5 = 0 and get rootsr =
1± 2i. Thus the general solution to the homogeneous equation is

y = et(A cos 2t+B sin 2t)

Solving for the initial conditions we get

y = et(cos 2t− 1

2
sin 2t)

#28:Consider the ODE
y′′ + y = 0

cos t and sin t are clearly solutions. Moreover W (cos t, sin t) = 1, thus they form a funda-
mental set of solutions to the ODE. This means that any solution to the ODE is a linear
combination of cos t and sin t. Observe that eit is also a solution to the ODE, and hence is
a linear combination of cos t and sin t, or in other words

eit = c1 cos t+ c2 sin t

we can solve for c1 and c2 by evaluating at t = 0 then differentiating and evaluating at t = 0
to get c1 = 1 and c2 = i.

#29:Consider Euler’s Formula:

eit = cos t+ i sin t

Replacing t wit −t and using that cos t is an even function and that sin t is odd we get:

e−it = cos−t+ i sin−t = cos t− i sin t

Thus if we add the first and second we get eit + e−it = 2 cos t or

eit + e−it

2
= cos t

similarly
eit − e−it

2i
= sin t

3.5
#2:Consider the ODE

9y′′ + 6y′ + y = 0

To find the general solution we get the characteristic equation 9r2 + 6r + 1 = (3r + 1)2 = 0
which has the repeated root r = −1

3
. Thus we only get one linearly independent solution

from the characteristic equation y1 = e−
1
3
t. To solve this problem we hypothesize a solution
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of the form y(t) = v(t)y1(t). Doing this we get that v(t) must satisfy the ODE v′′ = 0. Thus
v = c1t+ c2 so we get the generla solution to the original equation as

y = c1te
− 1

3
t + c2e

− 1
3
t

#12: Solve the IVP
y′′ − 6y′ + 9y = 0 y(0) = 0, y′(0) = 2

As before we look at the characteristic equation to get r2 − 6r+ 9 = (r− 3)2 = 0 which has
one repeated root r = 3. So the general solution to the homogeneous equation is

y = c1te
3t + c2e

3t

Then satisfying the initial condtions we get:

y = 2te3t

#20:Consider the ODE

y′′ + 2ay′ + a2y = 0

To find the general solution we consider the characteristic equation r2+2ar+a2 = (r+a)2 = 0
which has one repeated root r = −a. By Abel’s Theorem

W (y1, y2)(t) = exp

[
−
∫

2adt

]
= e−2at

Thus if we note also that W (y1, y2)(t) = y1y
′
2−y′1y2 then we can substitute the above for W (t)

and take y1 = e−at. Then we solve the resulting 1st order equation for y2 to get y2 = te−at

#25:Consider the ODE

t2y′′ + 3ty′ + y = 0

with the solution y1 = t−1. We can use reduction o order to find the second solution. First
we guess a solution of the form

y2 = v(t)y1(t) = vt−1

Then we differentiate and substitute back in to get that v(t) satisfies

v′′t+ v′ = 0

Thus for y2 we get

y2 =
ln t

t


