## Math 22B: HW 7

Sec. 3.6: 1, 9, 10, 18

## 1 Sec. 3.6

## **3.6.1**) Given

$$y'' - 2y' - 3y = 3e^{2t},$$

to find the general solution, we must

(a) find the general solution to the corresponding homogeneous equation

$$y'' - 2y' - 3y = 0$$

- (b) find a particular solution to the given equation.
- (a) To solve

$$y'' - 2y' - 3y = 0$$

we note that the associated characteristic equation is

$$r^2 - 2r - 3 = 0$$

$$(r-3)(r+1) = 0$$

$$r = 3 \text{ or } r = -1.$$

So the general solution to the homogenous equation is

$$y_h = c_1 e^{3t} + c_2 e^{-t}.$$

(b) To find a particular solution to the given equation, we assume that the solution is of the form

$$u = Ae^{2t}$$

$$y' = 2Ae^{2t}$$

$$y'' = 4Ae^{2t}.$$

Substituting these back into the given ODE we get

$$4Ae^{2t} - 2(2Ae^{2t}) - 3(Ae^{2t}) = 3e^{2t}$$

$$-3A = 3$$

$$A = -1$$
.

So, a particular solution is

$$y_p = -e^{2t}.$$

Therefore, our general solution is

$$y = y_h + y_p = c_1 e^{3t} + c_2 e^{-t} - e^{2t}$$
.

**3.6.9**) Given

$$u'' + \omega_0^2 u = \cos(\omega t)$$

with  $\omega^2 \neq \omega_0^2$ ,

• the corresponding homogeneous equation is

$$u'' + \omega_0^2 u = 0$$

and the associated characteristic equation to this equation is

$$r^2 + \omega_0^2 = 0$$

$$r = \pm \omega_0 i$$
.

So, the general solution to the homogenous equation is

$$u_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t).$$

• Since  $\omega^2 \neq \omega_0^2$ , we use as our particular solution

$$u = A\cos(\omega t) + B\sin(\omega t)$$

$$u' = -A\omega \sin(\omega t) + B\omega \cos(\omega t)$$

$$u'' = -A\omega^2 \cos(\omega t) - B\omega^2 \sin(\omega t).$$

Substituting these back into the given equation, we get

$$-A\omega^2\cos(\omega t) - B\omega^2\sin(\omega t) + \omega_0^2[A\cos(\omega t) + B\sin(\omega t)] = \cos(\omega t)$$

$$-A\cos(\omega t)(\omega_0^2 - \omega^2) + B\sin(\omega t)(\omega_0^2 - \omega^2) = \cos(\omega t)$$

So,

$$B = 0$$

and

$$-A(\omega_0^2 - \omega^2) = 1$$

$$A = -\frac{1}{\omega_0^2 - \omega^2},$$

which means that our particular solution is

$$u_p = -\frac{1}{\omega_0^2 - \omega^2} \cos(\omega t).$$

So, the general solution to the given nonhomogeneous equation is

$$u = u_h + u_p = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) - \frac{1}{\omega_0^2 - \omega^2} \cos(\omega t).$$

## **3.6.10**) Given

$$u'' + \omega_0^2 u = \cos(\omega_0 t)$$

• Note that the corresponding homogenous equation is the same as in problem 3.6.9 above. So

$$u_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t).$$

• To find a particular solution, we first note that the nonhomogenous term in the given equation,  $\cos(\omega_0 t)$ , is a solution to the homogeneous equation (with  $c_1 = 1$  and  $c_2 = 0$  in the above  $u_h$ .) So, the form of the particular solution that we use is

$$u = At\cos(\omega_0 t) + Bt\sin(\omega_0 t)$$

$$u' = A\cos(\omega_0 t) - At\omega_0 \sin(\omega_0 t) + B\sin(\omega_0 t) + Bt\omega_0 \cos(\omega_0 t)$$

$$u'' = -A\omega_0 \sin(\omega_0 t) - A\omega_0 \sin(\omega_0 t) - At\omega_0^2 \cos(\omega_0 t)$$

$$+ B\omega_0 \cos(\omega_0 t) + B\omega_0 \cos(\omega_0 t) - Bt\omega_0^2 \sin(\omega_0 t)$$

Substituting these back into the given equation, we get

$$-2A\omega_0 \sin(\omega_0 t) - At\omega_0^2 \cos(\omega_0 t) + 2B\omega_0 \cos(\omega_0 t) - Bt\omega_0^2 \sin(\omega_0 t) + \omega_0^2 [At\cos(\omega_0 t) + Bt\sin(\omega_0 t)] = \cos(\omega_0 t)$$

 $= -2A\omega_0\sin(\omega_0 t) - At\omega_0^2\cos(\omega_0 t) + 2B\omega_0\cos(\omega_0 t) - Bt\omega_0^2\sin(\omega_0 t)$ 

or

$$-2A\omega_0\sin(\omega_0t) + [At\omega_0^2 + 2B\omega_0 + At\omega_0^2]\cos(\omega_0t) = \cos(\omega_0t)$$

Since there is no sine term on the right side of the equation,

$$-2A\omega_0=0$$

$$A = 0$$
.

Also, since the coefficient in front of the cosine term on the right side of the equation is 1,

$$At\omega_0^2 + 2B\omega_0 + At\omega_0^2 = 1$$

and since A=0,

$$B = \frac{1}{2\omega_0}.$$

So, a particular solution is

$$u_p = \frac{1}{2\omega_0} t \sin(\omega_0 t)$$

Therefore the general solution is

$$u = u_h + u_p = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{1}{2\omega_0} t \sin(\omega_0 t).$$

**3.6.18**) Given

$$y'' + 2y' + 5y = 4e^{-t}\cos(2t)$$

and y(0) = 1 and y'(0) = 0

• The corresponding homogeneous equation is

$$y'' + 2y' + 5y = 0$$

and its characteristic equation is

$$r^{2} + 2r + 5 = 0$$

$$r = \frac{-2 \pm \sqrt{4 - 4(5)}}{2}$$

$$r = -1 + 2i$$

So, the general solution to the homogeneous equation is

$$y_h = c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t).$$

• Since the homogeneous solution has the form

$$y_h = c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t)$$

we multiply by t, for the form of the particular solution. So we assume a solution of the form

$$y = Ate^{-t}\cos(2t) + Bte^{-t}\sin(2t)$$

$$y' = Ae^{-t}\cos(2t) - Ate^{-t}\cos(2t) - 2Ate^{-t}\sin(2t)$$

$$+ Be^{-t}\sin(2t) - Bte^{-t}\sin(2t) + 2Bte^{-t}\cos(2t)$$

$$= [A - At + 2Bt]e^{-t}\cos(2t) + [B - Bt - 2At]e^{-t}\sin(2t)$$

$$y'' = [-A + 2B]e^{-t}\cos(2t) - [A - At + 2Bt]e^{-t}\cos(2t) - 2[A - At + 2Bt]e^{-t}\sin(2t) + [-B - 2A]e^{-t}\sin(2t) - [B - Bt - 2At]e^{-t}\sin(2t) + 2[B - Bt - 2At]e^{-t}\cos(2t)$$
$$= [-2A + 4B - 3At - 4Bt]e^{-t}\cos(2t) + [-4A - 2B + 4At - 3Bt]e^{-t}\sin(2t).$$

So, substituting these into the given equation, we get

$$[-2A + 4B - 3At - 4Bt]e^{-t}\cos(2t) + [-4A - 2B + 4At - 3Bt]e^{-t}\sin(2t) + 2\{[A - At + 2Bt]e^{-t}\cos(2t) + [B - Bt - 2At]e^{-t}\sin(2t)\} + 5(Ate^{-t}\cos(2t) + Bte^{-t}\sin(2t)) = 4e^{-t}\cos(2t)$$

5

which simplifies to

$$4Be^{-t}\cos(2t) - 4Ae^{-t}\sin(2t) = 4e^{-t}\cos(2t).$$

So

$$A = 0$$
 and  $B = 1$ ,

which gives us

$$y_p = te^{-t}\sin(2t).$$

Hence, the general solution is

$$y = y_h + y_p = c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t) + t e^{-t} \sin(2t).$$

and

$$y' = -c_1 e^{-t} \cos(2t) - 2c_1 e^{-t} \sin(2t)$$
$$-c_2 e^{-t} \sin(2t) + 2c_2 e^{-t} \cos(2t)$$
$$+e^{-t} \sin(2t) - t e^{-t} \sin(2t) + 2t e^{-t} \cos(2t).$$

Now, y(0) = 1 implies

$$c_1 = 1$$

and y'(0) = 0 implies

$$-c_1 + 2c_2 = 0$$
$$c_2 = \frac{1}{2}.$$

So, our solution is

$$y = e^{-t}\cos(2t) + \frac{1}{2}e^{-t}\sin(2t) + te^{-t}\sin(2t).$$