MATH 22B-001: Differential Equations MidTerm Exam I, Wednesday January 31, 2001

Name:
Score of this page: \qquad
Total Score: \qquad
Problem 1 (20 pts) Consider the following initial value problem (IVP).

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-\frac{2}{t} y=t^{2} e^{t}, \quad t \geq 1, \quad y(1)=0
$$

(a) $(5 \mathrm{pts})$ Is this differential equation linear or nonlinear?
(b) (5 pts) What method would you use to find a solution to this IVP?
(c) (10 pts) Solve this IVP.

Solution
(a)Linear
(b)Integrating factor or variation of parameters
(c)Multiply on both sides by integrating factor $\mu(t)$:

$$
\mu y^{\prime}-\frac{2}{t} \mu y=\mu t^{2} e^{t}
$$

Let

$$
\mu y^{\prime}-\frac{2}{t} \mu y=\mu y^{\prime}+\mu^{\prime} y
$$

which gives

$$
\mu^{\prime}=-\frac{2}{t} \mu \longrightarrow \frac{\mu^{\prime}}{\mu}=-\frac{2}{t} \longrightarrow \ln |\mu|=-2 \ln |t|
$$

so we pick

$$
\mu(t)=\frac{1}{t^{2}}
$$

Therefore we have

$$
\left(\frac{1}{t^{2}} y\right)^{\prime}=\frac{1}{t^{2}} \cdot t^{2} e^{t}=e^{t}
$$

Integration yields:

$$
\frac{1}{t^{2}} y=e^{t}+C \longrightarrow y=t^{2}\left(e^{t}+C\right)
$$

Now, solving for the initial condition we get

$$
0=y(1)=1^{2}\left(e^{1}+C\right) \longrightarrow C=-e
$$

so

$$
y(t)=t^{2}\left(e^{t}-e\right)
$$

\qquad

Problem 2 (30 pts) Consider the following differential equation.

$$
(1+t) \frac{\mathrm{d} y}{\mathrm{~d} t}=1+y
$$

(a) $(5 \mathrm{pts})$ Is this differential equation linear or nonlinear?
(b) (5 pts) What method would you use to find a solution of this differential equation?
(c) (10 pts) Solve this differential equation.
(d) (5 pts) Draw several integral curves by varying the integration constant c.
(e) $(5 \mathrm{pts})$ All the integral curves pass through a common point on the $t y$-plane. What is the coordinate of this common point?

Solution
(a)Linear
(b)Separation of Variables
(c)Assume that $1+t \neq 0$ and $1+y \neq 0$ then we have:

$$
\frac{d y}{1+y}=\frac{d t}{1+t}
$$

integrating gives:

$$
\ln |1+y|=\ln |1+t|+C \longrightarrow|1+y|=e^{C}|1+t|
$$

So, we have:

$$
y(t)=K(t+1)-1
$$

where K is an arbitrary constant. (d)

$(\mathrm{e})(t, y)=(-1,-1)$ for all K.

Score of this page: \qquad

Problem 3 (30 pts) Consider the following initial value problem of population dynamics:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-y(y-\alpha)(y-\beta), \quad y(0)=y_{0}>0
$$

where $0<\alpha<\beta<\infty$.
(a) (9 pts) What are the equilibrium solutions? You must also state whether each equilibrium solution is asymptotically stable or unstable.
(b) (8 pts) Draw several integral curves by varying y_{0}.
(c) $(8 \mathrm{pts})$ Repeat (b) for the case $\alpha=\beta$.
(d) (5 pts) In order to avoid extinction, what condition y_{0} must satisfy (regardless of $\alpha<\beta$ or $\alpha=\beta$) ?

Solution
(a)The equilibrium solutions must satisfy

$$
f(y)=-y(y-\alpha)(y-\beta)=0
$$

thus, we have $y=0, \alpha, \beta$. To classify each as stable or unstable we note

$$
f^{\prime}(0)<0 ; f^{\prime}(\alpha)>0 ; \text { and } f^{\prime}(\beta)<0
$$

So $y=0, \beta$ are assymptotically stable while $y=\alpha$ is unstable.
(b)In the figure below $\alpha=1$ and $\beta=2$.
(c)In the figure below $\alpha=\beta=1$
(d)Regardless of $0<\alpha<\beta$ or $0<\alpha=\beta$, we need to have $y_{0} \geq \alpha$. Note that $y_{0}=\alpha$ is included.

Score of this page: \qquad

Select one of the following problems (either Problem 4-1 or 4-2), and solve it. You don't have to solve both of them, but if you want to and can solve both of them, you will get extra points.

Problem 4-1 (20 pts) Consider the following initial value problem (IVP)

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-(\tan x) y=0, \quad y(\pi)=1
$$

(a) $(5 \mathrm{pts})$ Is this differential equation linear or nonlinear?
(b) (5 pts) What is the interval of x where the solution to this IVP exists?
(c) (10 pts) Solve this IVP. [Hint: $\frac{d}{d x} \ln |\cos x|=-\frac{\sin x}{\cos x}$.]

Solution

(a)Linear
(b)From the theorem of existence and uniqueness of the solution to an IVP, we have to have an interval I where $\tan x$ is conintuous and $x=\pi \in I$. To find the I we need we write

$$
\tan x=\frac{\sin x}{\cos x}
$$

Thus, $\tan x$ is continuos as long as $\cos x \neq 0$. But $\cos x=0$ for $x=\ldots-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2} \ldots$. So we see that we have a unique solution on $I=\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
(c)We have $y^{\prime}-\tan x y=0$. This is a separable equation. Thus we have:

$$
\frac{d y}{y}=\tan x d x
$$

Integrating gives:

$$
\ln |y|=-\ln |\cos x|+C \longrightarrow y=\frac{K}{\cos x}
$$

where K is a constant. Now solving for the initial condition $y(\pi)=1$ we get $K=-1$. Thus

$$
y(t)=-\frac{1}{\cos x}
$$

Problem 4-2 (20 pts) Consdier the following IVP.

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-2 t y=1, \quad 0 \leq t \leq 1, \quad y(0)=1
$$

(a) (10 pts) Derive Euler's formula for this equation. Use h as a step size.
(b) (10 pts) Let $h=0.5$ and compute y_{0}, y_{1}, and y_{2} numerically by hand.

Solution
(a) $y^{\prime}=2 t y+1=f(t, y)$ and $t_{i}=i h, i=0,1,2, \ldots$

$$
\begin{aligned}
y_{0} & =1 \\
y_{i+1} & =y_{i}+h f\left(t_{i}, y_{i}\right) \\
& =y_{i}+h\left(2 t_{i} y_{i}+1\right) \\
& =y_{i}+h\left(2 \cdot i h \cdot y_{i}+1\right) \\
& =\left(1+2 h^{2} i\right) y_{i}+h
\end{aligned}
$$

(b)

$$
\begin{aligned}
y_{0} & =1 \\
(i=0) y_{1} & =\left(1+2 \cdot .5^{2} \cdot 0\right) y_{0}+.5 \\
& =1.5 \\
(i=1) y_{2} & =\left(1+2 \cdot .5^{2} \cdot 1\right) y_{1}+.5 \\
& =1.5 \cdot 1.5+.5 \\
& =2.75
\end{aligned}
$$

