MATH 22B-001: Differential Equations MidTerm Exam II, Wednesday February 21, 2001

Name: \qquad
Score of this page: \qquad
Total Score: \qquad
Problem 1 (30 pts) Solve the following initial value problems (' represents $\frac{d}{d t}$).
(a) $y^{\prime \prime}-y=0 \quad y(0)=1, y^{\prime}(0)=-1$.

Solution: The characteristic equation $r^{2}-1=0$ has roots ± 1 so we get:

$$
y=c_{1} e^{t}+c_{2} e^{-t}
$$

now solving for the initial conditions gives:

$$
\left.\begin{array}{l}
y(0)=c_{1}+c_{2}=1 \\
y^{\prime}(0)=c_{1}-c_{2}=-1
\end{array}\right\} \Longrightarrow c_{1}=0, c_{2}=1
$$

so the solution is

$$
y=e^{-t}
$$

(b) $y^{\prime \prime}+2 y^{\prime}+y=0 \quad y(0)=1, y^{\prime}(0)=0$.

Solution:The characteristic equation $r^{2}+2 r+2=0$ has one repeated root $r=-1$. Thus the general solution has the form:

$$
y=c_{1} e^{-t}+c_{2} t e^{-t}=\left(c_{1}+c_{2} t\right) e^{-t}
$$

now solving for the initial conditions gives:

$$
\left.\begin{array}{l}
y(0)=c_{1}=1 \\
y^{\prime}(0)=c_{1}-c_{2}=0
\end{array}\right\} \Longrightarrow c_{1}=1, c_{2}=1
$$

so the solution is

$$
y=(1+t) e^{-t}
$$

(c) $y^{\prime \prime}+y^{\prime}+y=0 \quad y(0)=0, y^{\prime}(0)=1$

Solution:The characteristic equation $r^{2}+r+1=0$ has roots $r=\frac{-1 \pm \sqrt{3} i}{2}$. Thus the solution has the general form:

$$
y=e^{-\frac{t}{2}}\left(c_{1} \cos \frac{\sqrt{3}}{2} t+c_{2} \sin \frac{\sqrt{3}}{2} t\right)
$$

Solving for the initial conditions we get

$$
y(0)=c_{1}=0 \Longrightarrow y=c_{2} e^{-\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t
$$

$$
y^{\prime}(0)=c_{2} \frac{\sqrt{3}}{2}=1 \Longrightarrow c_{2}=\frac{2}{\sqrt{3}}
$$

Thus

$$
y=\frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t
$$

Score of this page:
Problem 2 (20 pts) Let y_{1} and y_{2} be a fundamental set of solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then, prove that $y_{3}=y_{1}+y_{2}$ and $y_{4}=y_{1}-y_{2}$ also form a fundamental set of solutions to this differential equation.
Solution:Consider the Wronskian of y_{3} and y_{4} :

$$
\begin{gathered}
W\left(y_{3}, y_{4}\right)(t)=\left|\begin{array}{ll}
y_{3} & y_{4} \\
y_{3}^{\prime} & y_{4}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
y_{1}+y_{2} & y_{1}-y_{2} \\
y_{1}^{\prime}+y_{2}^{\prime} & y_{1}^{\prime}-y_{2}^{\prime}
\end{array}\right| \\
=\left(y_{1}+y_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right)-\left(y_{1}^{\prime}+y_{2}^{\prime}\right)\left(y_{1}-y_{2}\right)=-2\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
-2\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=-2 W\left(y_{1}, y_{2}\right)(t) \neq 0
\end{gathered}
$$

since y_{1} and y_{2} form a fundamental set of solutions. Thus we have that $W\left(y_{3}, y_{4}\right)(t) \neq 0$ so y_{3} and y_{4} are a fundamental set of solutions.

Score of this page:

Problem 3 (20 pts) Find the general solution to the following nonhomogeneous differential equation by the method of undetermined coefficients.

$$
y^{\prime \prime}+y^{\prime}-6 y=e^{3 t} .
$$

Solution: First let's solve the homogeneous equation:

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The characteristic equation is $r^{2}+r-6=0$ which has roots $r=2,-3$. Thus

$$
y_{1}=e^{2 t} \text { and } y_{2}=e^{-3 t}
$$

Now assume $Y=A e^{3 t}$ since 3 is not a root of the characteristic equation, so:

$$
Y^{\prime}=3 A e^{3 t} \text { and } Y^{\prime \prime}=9 A e^{3 t}
$$

so

$$
Y^{\prime \prime}+Y^{\prime}-6 Y=A e^{3 t}(9+3-6)=e^{3 t} \Longrightarrow A=\frac{1}{6}
$$

thus;

$$
y=c_{1} e^{2 t}+c_{2} e^{-3 t}+\frac{1}{6} e^{3 t}
$$

Score of this page: \qquad

Select one of the following problems (either Problem 4-1 or 4-2), and solve it. You don't have to solve both of them, but if you want to and can solve both of them, you will get extra points.

Problem 4-1 (30 pts) Consider the following initial value problem.

$$
(t-1) y^{\prime \prime}-t y^{\prime}+y=0, \quad t<1, \quad y(0)=1, y^{\prime}(0)=0
$$

(a) (10 pts) Find a particular solution $y_{1}(t)$ by observation/inspection. [Hint: This is a very simple function of t.]
Solution: You can see both $y_{1}=t$ and $y_{1}=e^{t}$ are solutions.
(b) (10 pts) Find a second linearly independent solution $y_{2}(t)$.

Solution:Assume that y_{2} has the form

$$
y_{2}(t)=v(t) y_{1}(t)
$$

If you take $y_{1}=t$ then we have

$$
y_{2}(t)=v(t) y_{1}(t)=v(t) \cdot t
$$

then

$$
\begin{gathered}
y_{2}^{\prime}=v^{\prime} t+v \\
y_{2}^{\prime \prime}=v^{\prime \prime} t+2 v^{\prime}
\end{gathered}
$$

Plugging into the ODE we get:

$$
(t-1)\left(v^{\prime \prime} t+2 v^{\prime}\right)-t\left(v^{\prime} t+v\right)+v t=0
$$

which simplifies to

$$
\begin{aligned}
& \frac{v^{\prime \prime}}{v^{\prime}}=\frac{t^{2}-2 t+2}{t(t-1)}=1-\frac{2}{t}+\frac{1}{t-1} \\
& \Rightarrow \ln \left|v^{\prime}\right|=t-2 \ln |t|+\ln |t-1| \\
& \quad \Rightarrow v^{\prime}=\frac{t-1}{t^{2}} e^{t}=\frac{1}{t} e^{t}-\frac{1}{t^{2}} e^{t}
\end{aligned}
$$

Now we integrate to get v :

$$
v=\int \frac{1}{t} e^{t} d t-\int \frac{1}{t^{2}} e^{t} d t=\int \frac{1}{t} e^{t} d t-\left(-\frac{1}{t} e^{t}+\int \frac{1}{t} e^{t} d t\right)=\frac{1}{t} e^{t}
$$

So we have

$$
y_{2}=v t=\frac{1}{t} e^{t} \cdot t=e^{t}
$$

Giving the general solution:

$$
y(t)=c_{1} e^{t}+c_{2} t
$$

Alternatively: we could take $y_{1}=e^{t}$ then

$$
y_{2}(t)=v(t) y_{1}(t)=v(t) e^{t}
$$

so that

$$
\begin{gathered}
y_{2}^{\prime}=\left(v^{\prime}+v\right) e^{t} \\
y_{2}^{\prime \prime}=\left(v^{\prime \prime}+2 v^{\prime}+v\right) e^{t}
\end{gathered}
$$

Substituing back into the ODE as before we end up witht the equation:

$$
\frac{v^{\prime \prime}}{v^{\prime}}=-\frac{t-2}{t-1}=-1+\frac{1}{t-1}
$$

So that

$$
v^{\prime}=(t-1) e^{-t}
$$

Integrating gives:

$$
v=\int(t-1) e^{-t} d t=-(t-1) e^{-t}+\int e^{-t} d t=-t e^{-t}
$$

Thus:

$$
y_{2}=v y_{1}=-t e^{-t} \cdot e^{t}=-t
$$

Giving the general solution

$$
y(t)=c_{3} e^{t}-c_{4} t
$$

Notice that this matches the original solution if we take $c_{1}=c_{3}$ and $c_{2}=-c_{4}$.
(c) (10 pts) Solve the initial value problem.

Solution:

$$
y=c_{1} e^{t}+c_{2} t
$$

So

$$
\left.\begin{array}{l}
y(0)=c_{1}=1 \\
y^{\prime}(0)=c_{1}+c_{2}=0
\end{array}\right\} \Longrightarrow c_{1}=1 \text { and } c_{2}=-1
$$

So

$$
y(t)=e^{t}-t
$$

Score of this page:

\qquad

Problem 4-2 (30 pts) A position $x(t)$ of mass m attached to a very simple spring system with the spring constant $k>0$ can be written as:

$$
m x^{\prime \prime}+k x=0 .
$$

(a) (10 pts) Suppose the initial condition is $x(0)=0$ and $x^{\prime}(0)=1$. Solve this equation.
 a solution of the form

$$
x(t)=c_{1} \cos \sqrt{\frac{k}{m}} t+c_{2} \sin \sqrt{\frac{k}{m}} t
$$

Now, satisfying the initial conditions we get

$$
\left.\begin{array}{l}
x(0)=c_{1}=0 \\
x^{\prime}(0)=\sqrt{\frac{k}{m}} c_{2}=1
\end{array}\right\} \Longrightarrow c_{1}=0 \text { and } c_{2}=\sqrt{\frac{m}{k}}
$$

Thus

$$
x(t)=\sqrt{\frac{m}{k}} \sin \sqrt{\frac{k}{m}} t
$$

(b) (20 pts) If the external force $\sin \omega t$ is applied, then the differential equation becomes:

$$
m x^{\prime \prime}+k x=\sin \omega t
$$

At what value of ω the solution becomes unbounded (i.e., blows up) as $t \rightarrow \infty$? State your reasoning clearly. (This situation is called a resonance in physics.)
Solution: We know that if ωi is a solution to the characteristic equation $m r^{2}+k=0$ then the particular solution os of the form

$$
x(t)=A t \cos \omega t+B t \sin \omega t
$$

which blows up as $t \longrightarrow \infty$. Thus $\omega= \pm \sqrt{\frac{k}{m}}$.

