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ABSTRACT

Inherent to photograph-like images are two types of strestu
large smooth regions and geometrically smooth edge consay-
arating those regions. Over the past years, efficient reptaons
and algorithms have been developed that take advantageclof ea
of these types of structure independently: quadtree mddeD
waveletsare well-suited for uniformly smooth imageS7{ every-
where), while quadtree-organizedgeletpproximations are ap-
propriate for purely geometrical images (containing nuoghbut
C? contours). This paper shows howdombinethe wavelet and
wedgelet representations in order to take advantage oftppés

of structure simultaneously. We show that the asymptotic@p-
mation and rate-distortion performance of a wavelet-wedgep-
resentation on piecewise smooth images mirrors the pedfiocem

of both wavelets (for uniformly smooth images) and wedgelet
(for purely geometrical images). We also discuss an efficikyo-
rithm for fitting the wavelet-wedgelet representation taraage;
the convenient quadtree structure of the combined repiegs@m
enables new algorithms such as the recent WSFQ geometrieima
coder.

1. INTRODUCTION

At the core of image processing lies the problem of charaeter
ing image structure. Building an accurate, tractable nmatieal
characterization that distinguishes a “real-world, pgoaph-like”
image from an arbitrary set of data is fundamental to any énag
processing algorithm. There are two particular types afcstr
ture that any processing algorithm should exploit: imagegain
smooth, homogeneous regiogsdyscale regularity, and these re-
gions are separated by smooth contogesofnetric regularity.

A vital part of the characterization is tiraage representation
Using an atomic decomposition, we approximate an im&ge)
using a linear combination of atorhsfrom a dictionaryD

X(s) Z aibi(s), {bi} CD

1)

~

X(s) + e(s).
We desire a dictionar with the following properties:

e Every image of interest is well-approximatetie(s)||3
small) using relatively few terms#{b;} := N small). We
quantify the approximation power by measuring how fast
llell3 — 0 asN — oo.

X(s)

)
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e There is a practical algorithm to find a set{éf } that yield
a good approximation.

e D has limited complexity; we can efficiently specify (en-
code) the{b;} used in the approximation.

In this paper, we will introduce a new geometrical represent
tion that is well suited for piecewise smooth images (smaatay
from smooth contours).

The wavelet transform [1] has emerged as a powerful repre-
sentation for image processing. The success of waveletsisad
the fact that they provide sparserepresentation for 1D smooth
signals interrupted by isolated discontinuities [1] (tisigin excel-
lent model for “image slices” — 1D cross sections of a 2D imjage
If Xaice is a 1D image slice that is uniformly smootf'{ ev-
erywhere) and we use an orthonormal wavelet basi©fam (1),
then we can find a set of wavelefs; } such that|¢||3 ~ N~*
asN — oo (this is also the fastest rate of decay for any orthog-
onal basis for this class of signafs)Amazingly, this rate does
not change if we introduce a finite number of discontinuitigs
Xaice; the wavelet representation is equally powerful for piece-
wise smooth and uniformly smooth image slices. Moreoves, th
{b;} chosen for the piecewise smooth case can be restrictedtso tha
they correspond to nodes on a connected binary tree [2]. As ar
sult, the choice of atom&; } used to build up the image slice can
be efficiently “coded,” and we can use fast tree pruning atlgas
to find the optimal set of atoms givelg;.. [3]. Wavelet-based
compression algorithms using these ideas can be shown @ hav
optimal asymptotic rate-distortion decay [2, 4].

Instead of a 1D image slice, consider an “image segment”
Xseg(s) — a 2D local region of an image. X, (s) is uniformly
smooth C? everywhere), then wavelets coupled with quadtree
models and algorithms still achieve the best possible pe
tion rate —]|€||3 ~ N2 for 2D [1]. If, however, X, is Smooth
everywhere except along a smooth contour, see Figure 1pthe a
proximation rate slows tdje||3 ~ N~' [5]. That is, unlike the
1D image slice result, adding a discontinuity along a contowa
2D image segment significantly affects the ability of watel®
provide a sparse representation. In fact, no matter how gntbe
image is away from the contour, or how simple the contoulifitse
is, the approximation rate remains the same. It simply tédes
many wavelet basis functions to build up edge contours irgaaa

Recent research in harmonic analysis has focussed on finding
representations for 2D piecewise smooth image segmerntsitha
ror the effectiveness of wavelets on 1D image slices (optihe
oretical approximation rate, simple models, and pracpcatess-
ing algorithms) [5-8]. For “horizon class” (or “cartoon’niage

1we write f(k) ~ g(k) when there exists a constafitindependent of
k such thatf (k) < Cg(k).
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Fig. 1. (a) “Cameraman” image, (b) image segment, (c) horizon
class image playing the role éf. in (4).

segments that are constant except along a smooth contour

17 S2 > c(s
Aeeelo) = Hoeslon,52) = {07 82 < CESS

c(s1) € C*([0,1]) @)

the simplest of these, the wedgelet representation [8a8]alsuc-
cess story similar to wavelets in 1D.

A wedgelets a piecewise constant function on a dyadic square
S that is discontinuous along a line throughwith orientation
¢ := (r,0), see Figure 2(a) for an illustration. Wedgelet repre-
sentationof an imageX consists of a dyadic partition of the do-
main of X along with a wedgelet function in each dyadic square,
see Figure 2(c).

Like the 2D wavelet transform, the wedgelet representation

@) (b) (©

Fig. 2. (a) A wedgelet in a dyadic block is parameterized by angle
0, offsetr, and heights., ho. (b) Example of a “simple cartoon
image”, (c) The wedgelet representation divides the dora&ihe
image into dyadic squares, using a piecewise constantiéumict
each square to approximate the image.

useful for classification or performing rapid database dezs in
the compressed domain.

In Section 2, we present asymptotic approximation and rate-
distortion bounds for the wavelet-wedgeprint dictioné@gction 3
briefly discusses how to choose a representation given ageima

2. REPRESENTING PIECEWISE SMOOTH IMAGES
WITH WAVELETSAND WEDGEPRINTS

In this section, we outline an argument to show that by usidig-a
tionary composed of orthonormal wavelets ameldgeprints(de-
fined below) we can achiejg||3 ~ N2 for C?/C? image seg-

can be organized on a quadtree. The nodes of the quadtree dements. In addition, the structure of the wavelet-wedgejlictio-

fine the dyadic partition. Attached to each leaf of the quesltr
is a wedgelet that approximates the image over the corresmppn
dyadic square. Just as we can prune the wavelet quadtrela-at re
tively coarse scales in regions where the image is smootltawe
prune the wedgelet quadtree in regions of a horizon clasgema
where the contour is almost linear. As such, horizon clasges
can be well approximated using a small number of wedgeléts. |
we takeD in (1) above to be a suitable wedgelet dictionary, then
we can use tree pruning algorithms to select a represemtitat
achieves|¢||3 ~ N~2. In addition, we can exploit the regularity
of the image contours further by incorporatingaltiscale geome-
try modelinto the selection algorithm that favors sets of wedgelets
whose orientations “line up” between dyadic blocks [10].

In this paper, we will show that we can achieve the same
N~2 approximation rate onC?/C?” piecewise smooth image
segments

Xeog(s) = X1 (s) - He + Xa(s) - (1 — Hy)
Xi(s), Xa(s) € C*([0,1]%) (4)

using a dictionary composed of wavelets anddgeprints—
wedgelets projected onto fine wavelet scales (a concept simi
lar to the wavelet footprints of [11]). The combined dictio-
nary is simple enough that a simple coder based on this dictio
nary achieves near-optimal asymptotic rate-distortiafopmance
D(R) ~ (logR)>/R?. Moreover, given an image segment,
we can find a suitable representation using a fast dynamic pro
gram. These results serve as a theoretical justificatiorrdor-
bined wavelet-wedgelet image coders such as the WSFQ [12].

In addition to improving the approximation and coding rate,
the choice of representation carries geometrical siderimd¢ion.
The coder will choose to use wedgeprint along contours innthe
age, making semantic information about the locations edgai-

H. € Horizon class

nary allows us to efficiently encode the atofits} chosen for the
approximation, allowing us to translate the approximatiesult
into a rate-distortion bound.

Let be ;. be a set of compactly supported wavelet basis
functions, and letw; , be the corresponding wavelet coefficients
of a C?/C? image segmeni.... Choose a maximum (finest)
scaleJ. We will describe a way to prune the wavelet quadtree,
using wedgeprint functions instead of wavelets along theao
at the finest scale, to approximal&., with Error ~ 277 using
N ~ 27/2 terms.

Wavelet approximation. Simply truncating the wavelet trans-
form at scaleJ gives us a squared error
Errorirune ~ 277, (5)
We will classify the remainingv;, . as type | if the edge contour
does not interseap; ,, and type Il if it does. Sinc@, ;. is com-
pactly supported, ifv;,, is type |, then all of the descendants of
wj,, on the wavelet quadtree are also type | . The regularity of the
contour means that at scajethere will be~ 27 wavelet coeffi-
cients of type Il andv 2%/ of type | .

The image is uniformlyC? on the support of a typed; »; as
a result, the coefficient magnitudes decay quickly acroaste §it].

For type llw; 1, the decay is much slower

204
2~

~

(6)
@)

|wj,;€|2 YV wjk type 1

lw;k]?  ~ YV wjk type II.
We will build the approximation toX.., by keeping all the
wavelet coefficients up to scalg/4 and then pruning the wavelet

quadtree beneath all type | nodes at scalgs. .. J/2. We will

able in the compressed domain. These “edge maps” could proveperform~ 27/2 prunings at scalg/4 and ~ 27/2 as we prune
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Fig. 3. Since the contout(t) is smooth inside of dyadic squage
with sidelengti2 =7 it can be bounded by a strip of width 2727
around a liné.

around the contour at scaldg4+1....J/2. Each pruning results
in an error of~ 2737/2  bringing the total error to
®

The number of type | and type |l wavelet coefficients, respelt,
retained from scale. .. J/2is

—J
Errorpruner ~ 27 7.

NI ~ 2]/2
Nir ~ 2772,

9)
(10)

At scaleJ/2, we are left with~ 27/2 wavelet coefficients of
type Il . Simply pruning the wavelet quadtree beneath thesies
would result in an error of- 277/2 using~ 27/2 coefficients, an
approximation rate ofV —! rather thanNV=2. On the other hand,
continuing the pruning process down to scéleould result in an
error of ~ 277 using~ 27 coefficients; also atv ~! approxima-
tion.

Wedgeprint approximation. We will remedy this problem by
using~ 2”/2 wedgeprintfunctions to approximate the image seg-
ments at scalg/2...J. To develop the idea, we return briefly
to the spatial domain and examine how wedgelets can be used t
locally approximateX,.e along the contour.

Let S be a square subregion [tf, 1]* with sidelength 2~
through which the contout(s1) passes. Since(s1) is C?, there
exists a straight ling through S such thatc is contained in a
strip of width ~ 2727 around? (see Figure 3) [10]. The image
Xseg has bounded first derivative, so there exist constanj.
such that| Xseg — h1| < Ch,277 on one side of the strip and
[Xseg — h2| < Ch, 277 on the other side. Thus, using a wedgelet
W(S; £, h1, h2) with orientation? and heightsh, h2, we can can
approximateXs., on S with error

| Xeex (S) = W(S; £, ha, ha)lf5 ~ 27, (11)

(The error is~ 27% in the region outside the strip and 273/
inside the strip.)

Now consider a subtree of wavelet coefficients rooted along
the contour at scald/2 and locationk. Since the wavelets are
compactly supported, the subtree builds up the image in arequ
S with sidelengthk2~7/2 (K depends on the size of the support
of ¢ ;/2,). Letting W“]’/Q’k be the subspace spanned by all of the
basis functions in the subtree beneath nofi&, k) down to scale
J, we define the wedgeprint;/» 1 (S; €) to be a projection of a
wedgelet ontdVy, ,:

Coan(Si0) = Proj (W(S;6.0,1) = Wip) (12)
‘Pi]/2k

w/2,1(S5 ¢ e (13)

n(S0 = T

By (11), we know that we can use one wedgeprint instead of the
~ 27/% wavelets in the subtree rooted (at/2, k) to approximate
the projection ofX.g Onto Wj,’/2 and pay an error penalty of just

~ 273972 \We will use
N, ~27/? (14)

total wedgeprints to build up the contour X, at fine scales,
bringing the wedgeprint error to

Error, ~ 277, (15)
Collecting the results, we have used
Niotat = N1 + Nir + N, ~ 27/ (16)

total wavelets and wedgeprints to approximate the pie@ewis
smooth signalXs., with total squared error

—J
Erroriota = Errorirunc + Errorpruner + Errory, ~ 277, (17)

To conclude, if we choos® in (1) to be a combined wavelet-
wedgeprint dictionary, we achieve the best-possible asytiemap-
proximation decay of

llell3 ~ N72 (18)

for the class of>? /C? images.

Rate-distortion. In the context of image compression, we are in-
terested more in asymptotiate-distortionperformance than ap-
proximation decay. An image coder will need to spend bits not
only on the expansion coefficients for the atoms chosen fflgm
but also must encodehich atoms were chosen. Quantizing the
expansion coefficients also introduces and additionalcgoof er-

ror.

Fortunately, we can translate (18) into a rate-distortioarid
a/vithout too much difficulty. If we use- J bits to quantize each
wavelet coefficient, we will requir@yaveres ~ J27/2 bits overall,
while incurring a quantization distortioP\yavelet ~ 272772,

For the wedgeprints, we must quantize the orientation ak wel
as the expansion coefficient. We can lirhito be one of~ 227
possibilities (requiring~ J bits to code) and still have (11) hold.
Using another~ J bits to quantize the//2 wedgeprint coeffi-
cients, we useR, ~ J27/2 total bits while incurring distortion
~2739/2
The last component to consider is the indexing cost: the num-
ber of bits required to specify which wavelets and wedgegrin
are being used. Assigning a symbol froffPrune, Wavelet,
Wedgeprin} to each node in the quadtree requires less thiaits
per coefficient. Since all of the basis functions live on areared
tree, we can code all of these symbols usR@dexing ~ 27/2
bits.

In summary, we have an overall rate of

Dy

R= Rwavelets + R«p + Rindexing ~ J2‘]/2 (19)
with distortion
D S Errortotal + Dwavclct + DLP ~ 27(]‘ (20)
Combining (19) and (20)
2
D(R) ~ (log R)” 21)

R2
we see that our simple wavelet-wedgelet coder achievesopgiar
mal asymptotic rate-distortion performance.



3. SELECTING THE WAVELET-WEDGEPRINT
REPRESENTATION

We have shown that there exists a configuration of wavelals an
wedgeprints that closely approximatesC#/C? image. This
section addresses the more practical problem of finding a goo
wavelet-wedgeprint representation for a given image.

We are able to capture the contours in the image at fine scale
using very few wedgeprint functions. Of course, a codingx(ber
processing) algorithm would not know the locations of the-co o
toursa priori. The encoder needs to make decisions about wher¢
to place the wavelets and wedgeprints dynamically.

Fortunately, the structure of the wavelet-wedgeprintidizry
allows us to formulate and solve an optimization problemrd fi
the best configuration for a given image. For simplicity, wid w
discuss the approximation problem where the complexityhef t
representation is simply the number of terms. We refer tdfid2
the implementation of an actual image coder.

Given an image and ai, we wish to find the best (smallest

Fig.
PSNR=28.77dB), (b) Wavelet-wedgeprint pruning (N=5158,
PSNR=30.27dB).

(@ b

4. (a) Wavelet pruning of “Cameraman” (N=7359,

error) N-term configuration of wavelets and wedgeprints. Putting statistical image processing tasks. These are currentgrun-

the problem in Lagrange form, we wish to solve
min (Error + AN) (22)

Since the atoms chosen for the representation lie on a con- o
nected tree and we restrict wedgeprints to live on the leaf/ggs
tree, (22) can be solved efficiently with the classical CARF d
namic programming algorithm [13]. CART makes a single sweep
up the quadtree; at each node, the local cost in error of pguni
below this node is weighed against the savings in rate. Bgipas
these decisions upwards through ancestor nodes, we carhénd t
wavelet-wedgeprint tree that globally maximizes (22).

Itis worth noting that in the end, the encoder cares littleutb
the actual contour locations in the image. It simply triesniai-
mize (22) for a giverm\. However, the encoder will tend to choose
wavelets over smooth regions and wedgeprints over linggoao
regions, because the local rate-distortion tradeoff ieffavie. The
encoder thus naturally adapts to the geometrical strudtutiee
image and does not rely on any pre-processed edge detection.

Figure 4 shows approximations of the “Cameraman” test im-
age using standard wavelet tree pruning and wavelet-weitgep
tree pruning. Using the wavelet-wedgeprint dictionary,askieve
significant gains both visually (sharper edges and reduogihg)
and in peak signal-to-noise ratio while using 30% fewer geim
the approximation.

We can also tie the orientations of the wedgeprints together
along a contour, making them even cheaper to code. A Markov [9]
multiscale geometry model [10] can be incorporated intostie
lection of the representation; the optimal tree prunindhwéispect
to this model is found using the Viterbi algorithm.

(4]

(5]

(6]

(7]

(8]

[10]
4. CONCLUSIONS
We have developed a new framework for “multiscale geomet- [11]
ric image processing” that leverages the best of wavelets fo
representing smooth image regions and wedgelets for @qres

ing smooth edge contours. F@¥?/C? images, the combined  [12]
wavelet/wedgeprint dictionary provides optimal asymigtatp-
proximation performance, and a simple prototype image rcode
provides near-optimal rate-distortion performance. Whie have

used compression to illustrate the effectiveness of ourcagh, a (23]

statistical wavelet/wedgeprint model will enable new aildyons
for estimation, detection, classification, segmentatind ather

vestigation.
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