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ABSTRACT

Inherent to photograph-like images are two types of structures:
large smooth regions and geometrically smooth edge contours sep-
arating those regions. Over the past years, efficient representations
and algorithms have been developed that take advantage of each
of these types of structure independently: quadtree modelsfor 2D
waveletsare well-suited for uniformly smooth images (C2 every-
where), while quadtree-organizedwedgeletapproximations are ap-
propriate for purely geometrical images (containing nothing but
C2 contours). This paper shows how tocombinethe wavelet and
wedgelet representations in order to take advantage of bothtypes
of structure simultaneously. We show that the asymptotic approxi-
mation and rate-distortion performance of a wavelet-wedgelet rep-
resentation on piecewise smooth images mirrors the performance
of both wavelets (for uniformly smooth images) and wedgelets
(for purely geometrical images). We also discuss an efficient algo-
rithm for fitting the wavelet-wedgelet representation to animage;
the convenient quadtree structure of the combined representation
enables new algorithms such as the recent WSFQ geometric image
coder.

1. INTRODUCTION

At the core of image processing lies the problem of characteriz-
ing image structure. Building an accurate, tractable mathematical
characterization that distinguishes a “real-world, photograph-like”
image from an arbitrary set of data is fundamental to any image
processing algorithm. There are two particular types of struc-
ture that any processing algorithm should exploit: images contain
smooth, homogeneous regions (grayscale regularity), and these re-
gions are separated by smooth contours (geometric regularity).

A vital part of the characterization is theimage representation.
Using an atomic decomposition, we approximate an imageX(s)
using a linear combination of atomsbi from a dictionaryD

�
X(s) =

�

i

αibi(s), {bi} ⊂ D (1)

X(s) =
�
X(s) + ε(s). (2)

We desire a dictionaryD with the following properties:

• Every image of interest is well-approximated (‖ε(s)‖2
2

small) using relatively few terms (#{bi} := N small). We
quantify the approximation power by measuring how fast
‖ε‖2

2 → 0 asN → ∞.
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• There is a practical algorithm to find a set of{bi} that yield
a good approximation.

• D has limited complexity; we can efficiently specify (en-
code) the{bi} used in the approximation.

In this paper, we will introduce a new geometrical representa-
tion that is well suited for piecewise smooth images (smoothaway
from smooth contours).

The wavelet transform [1] has emerged as a powerful repre-
sentation for image processing. The success of wavelets is due to
the fact that they provide asparserepresentation for 1D smooth
signals interrupted by isolated discontinuities [1] (thisis an excel-
lent model for “image slices” — 1D cross sections of a 2D image).
If Xslice is a 1D image slice that is uniformly smooth (C2 ev-
erywhere) and we use an orthonormal wavelet basis forD in (1),
then we can find a set of wavelets{bi} such that‖ε‖2

2 ∼ N−4

asN → ∞ (this is also the fastest rate of decay for any orthog-
onal basis for this class of signals).1 Amazingly, this rate does
not change if we introduce a finite number of discontinuitiesinto
Xslice; the wavelet representation is equally powerful for piece-
wise smooth and uniformly smooth image slices. Moreover, the
{bi} chosen for the piecewise smooth case can be restricted so that
they correspond to nodes on a connected binary tree [2]. As a re-
sult, the choice of atoms{bi} used to build up the image slice can
be efficiently “coded,” and we can use fast tree pruning algorithms
to find the optimal set of atoms givenXslice [3]. Wavelet-based
compression algorithms using these ideas can be shown to have
optimal asymptotic rate-distortion decay [2,4].

Instead of a 1D image slice, consider an “image segment”
Xseg(s) — a 2D local region of an image. IfXseg(s) is uniformly
smooth (C2 everywhere), then wavelets coupled with quadtree
models and algorithms still achieve the best possible approxima-
tion rate —‖ε‖2

2 ∼ N−2 for 2D [1]. If, however,Xseg is smooth
everywhere except along a smooth contour, see Figure 1, the ap-
proximation rate slows to‖ε‖2

2 ∼ N−1 [5]. That is, unlike the
1D image slice result, adding a discontinuity along a contour to a
2D image segment significantly affects the ability of wavelets to
provide a sparse representation. In fact, no matter how smooth the
image is away from the contour, or how simple the contour itself
is, the approximation rate remains the same. It simply takestoo
many wavelet basis functions to build up edge contours in images.

Recent research in harmonic analysis has focussed on finding
representations for 2D piecewise smooth image segments that mir-
ror the effectiveness of wavelets on 1D image slices (optimal the-
oretical approximation rate, simple models, and practicalprocess-
ing algorithms) [5–8]. For “horizon class” (or “cartoon”) image

1We writef(k) ∼ g(k) when there exists a constantC independent of
k such thatf(k) ≤ Cg(k).
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Fig. 1. (a) “Cameraman” image, (b) image segment, (c) horizon
class image playing the role ofHc in (4).

segments that are constant except along a smooth contour

Xseg(s) := Xseg(s1, s2) = � 1, s2 > c(s1)
0, s2 ≤ c(s1)

c(s1) ∈ C2([0, 1]) (3)

the simplest of these, the wedgelet representation [8,9], has a suc-
cess story similar to wavelets in 1D.

A wedgeletis a piecewise constant function on a dyadic square
S that is discontinuous along a line throughS with orientation
` := (r, θ), see Figure 2(a) for an illustration. Awedgelet repre-
sentationof an imageX consists of a dyadic partition of the do-
main ofX along with a wedgelet function in each dyadic square,
see Figure 2(c).

Like the 2D wavelet transform, the wedgelet representation
can be organized on a quadtree. The nodes of the quadtree de-
fine the dyadic partition. Attached to each leaf of the quadtree
is a wedgelet that approximates the image over the corresponding
dyadic square. Just as we can prune the wavelet quadtree at rela-
tively coarse scales in regions where the image is smooth, wecan
prune the wedgelet quadtree in regions of a horizon class image
where the contour is almost linear. As such, horizon class images
can be well approximated using a small number of wedgelets. If
we takeD in (1) above to be a suitable wedgelet dictionary, then
we can use tree pruning algorithms to select a representation that
achieves‖ε‖2

2 ∼ N−2. In addition, we can exploit the regularity
of the image contours further by incorporating amultiscale geome-
try modelinto the selection algorithm that favors sets of wedgelets
whose orientations “line up” between dyadic blocks [10].

In this paper, we will show that we can achieve the same
N−2 approximation rate on “C2/C2” piecewise smooth image
segments

Xseg(s) = X1(s) ·Hc +X2(s) · (1 −Hc)

X1(s),X2(s) ∈ C
2([0, 1]2) Hc ∈ Horizon class (4)

using a dictionary composed of wavelets andwedgeprints—
wedgelets projected onto fine wavelet scales (a concept simi-
lar to the wavelet footprints of [11]). The combined dictio-
nary is simple enough that a simple coder based on this dictio-
nary achieves near-optimal asymptotic rate-distortion performance
D(R) ∼ (logR)2/R2. Moreover, given an image segment,
we can find a suitable representation using a fast dynamic pro-
gram. These results serve as a theoretical justification forcom-
bined wavelet-wedgelet image coders such as the WSFQ [12].

In addition to improving the approximation and coding rate,
the choice of representation carries geometrical side information.
The coder will choose to use wedgeprint along contours in theim-
age, making semantic information about the locations edgesavail-
able in the compressed domain. These “edge maps” could prove
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Fig. 2. (a) A wedgelet in a dyadic block is parameterized by angle
θ, offsetr, and heightsh1, h2. (b) Example of a “simple cartoon
image”, (c) The wedgelet representation divides the domainof the
image into dyadic squares, using a piecewise constant function in
each square to approximate the image.

useful for classification or performing rapid database searches in
the compressed domain.

In Section 2, we present asymptotic approximation and rate-
distortion bounds for the wavelet-wedgeprint dictionary.Section 3
briefly discusses how to choose a representation given an image.

2. REPRESENTING PIECEWISE SMOOTH IMAGES
WITH WAVELETS AND WEDGEPRINTS

In this section, we outline an argument to show that by using adic-
tionary composed of orthonormal wavelets andwedgeprints(de-
fined below) we can achieve‖ε‖2

2 ∼ N−2 for C2/C2 image seg-
ments. In addition, the structure of the wavelet-wedgeprint dictio-
nary allows us to efficiently encode the atoms{bi} chosen for the
approximation, allowing us to translate the approximationresult
into a rate-distortion bound.

Let beψj,k be a set of compactly supported wavelet basis
functions, and letwj,k be the corresponding wavelet coefficients
of a C2/C2 image segmentXseg . Choose a maximum (finest)
scaleJ . We will describe a way to prune the wavelet quadtree,
using wedgeprint functions instead of wavelets along the contour
at the finest scale, to approximateXseg with Error ∼ 2−J using
N ∼ 2J/2 terms.
Wavelet approximation. Simply truncating the wavelet trans-
form at scaleJ gives us a squared error

Errortrunc ∼ 2−J . (5)

We will classify the remainingwj,k as type I if the edge contour
does not intersectψj,k, and type II if it does. Sinceψj,k is com-
pactly supported, ifwj,k is type I , then all of the descendants of
wj,k on the wavelet quadtree are also type I . The regularity of the
contour means that at scalej, there will be∼ 2j wavelet coeffi-
cients of type II and∼ 22j of type I .

The image is uniformlyC2 on the support of a type Iψj,k; as
a result, the coefficient magnitudes decay quickly across scale [1].
For type IIwj,k, the decay is much slower

|wj,k|
2 ∼ 2−6j ∀ wj,k type I (6)

|wj,k|
2 ∼ 2−2j ∀ wj,k type II . (7)

We will build the approximation toXseg by keeping all the
wavelet coefficients up to scaleJ/4 and then pruning the wavelet
quadtree beneath all type I nodes at scalesJ/4 . . . J/2. We will
perform∼ 2J/2 prunings at scaleJ/4 and∼ 2J/2 as we prune



S

2
−j

width~2
−2j

l

c(t)

Fig. 3. Since the contourc(t) is smooth inside of dyadic squareS
with sidelength2−j it can be bounded by a strip of width∼ 2−2j

around a linè .

around the contour at scalesJ/4+1 . . . J/2. Each pruning results
in an error of∼ 2−3J/2, bringing the total error to

ErrorpruneI ∼ 2−J . (8)

The number of type I and type II wavelet coefficients, respectively,
retained from scales0 . . . J/2 is

NI ∼ 2J/2 (9)

NII ∼ 2J/2. (10)

At scaleJ/2, we are left with∼ 2J/2 wavelet coefficients of
type II . Simply pruning the wavelet quadtree beneath these nodes
would result in an error of∼ 2−J/2 using∼ 2J/2 coefficients, an
approximation rate ofN−1 rather thanN−2. On the other hand,
continuing the pruning process down to scaleJ would result in an
error of∼ 2−J using∼ 2J coefficients; also anN−1 approxima-
tion.
Wedgeprint approximation. We will remedy this problem by
using∼ 2J/2 wedgeprintfunctions to approximate the image seg-
ments at scaleJ/2 . . . J . To develop the idea, we return briefly
to the spatial domain and examine how wedgelets can be used to
locally approximateXseg along the contour.

Let S be a square subregion of[0, 1]2 with sidelengthK2−j

through which the contourc(s1) passes. Sincec(s1) is C2, there
exists a straight linè throughS such thatc is contained in a
strip of width∼ 2−2j around` (see Figure 3) [10]. The image
Xseg has bounded first derivative, so there exist constantsh1, h2

such that|Xseg − h1| ≤ Ch1
2−j on one side of the strip and

|Xseg − h2| ≤ Ch2
2−j on the other side. Thus, using a wedgelet

W(S; `, h1, h2) with orientatioǹ and heightsh1, h2, we can can
approximateXseg onS with error

‖Xseg(S) −W(S; `, h1, h2)‖
2
2 ∼ 2−3j . (11)

(The error is∼ 2−4j in the region outside the strip and∼ 2−3j

inside the strip.)
Now consider a subtree of wavelet coefficients rooted along

the contour at scaleJ/2 and locationk. Since the wavelets are
compactly supported, the subtree builds up the image in a square
S with sidelengthK2−J/2 (K depends on the size of the support
of ψJ/2,k). LettingW J

J/2,k be the subspace spanned by all of the
basis functions in the subtree beneath node(J/2, k) down to scale
J , we define the wedgeprintϕJ/2,k(S; `) to be a projection of a
wedgelet ontoW J

J/2,k:

ϕ′

J/2,k(S; `) = Proj �W(S; `, 0, 1) →W J
J/2,k� (12)

ϕJ/2,k(S; `) =
ϕ′

J/2,k

‖ϕ′

J/2,k
‖2

. (13)

By (11), we know that we can use one wedgeprint instead of the
∼ 2J/2 wavelets in the subtree rooted at(J/2, k) to approximate
the projection ofXseg ontoW J

J/2 and pay an error penalty of just

∼ 2−3J/2. We will use

Nϕ ∼ 2J/2 (14)

total wedgeprints to build up the contour inXseg at fine scales,
bringing the wedgeprint error to

Errorϕ ∼ 2−J . (15)

Collecting the results, we have used

Ntotal = NI +NII +Nϕ ∼ 2J/2 (16)

total wavelets and wedgeprints to approximate the piecewise
smooth signalXseg with total squared error

Errortotal = Errortrunc + ErrorpruneI + Errorϕ ∼ 2−J . (17)

To conclude, if we chooseD in (1) to be a combined wavelet-
wedgeprint dictionary, we achieve the best-possible asymptotic ap-
proximation decay of

‖ε‖2
2 ∼ N−2 (18)

for the class ofC2/C2 images.
Rate-distortion. In the context of image compression, we are in-
terested more in asymptoticrate-distortionperformance than ap-
proximation decay. An image coder will need to spend bits not
only on the expansion coefficients for the atoms chosen fromD,
but also must encodewhich atoms were chosen. Quantizing the
expansion coefficients also introduces and additional source of er-
ror.

Fortunately, we can translate (18) into a rate-distortion bound
without too much difficulty. If we use∼ J bits to quantize each
wavelet coefficient, we will requireRwavelet ∼ J2J/2 bits overall,
while incurring a quantization distortionDwavelet ∼ 2−3J/2.

For the wedgeprints, we must quantize the orientation as well
as the expansion coefficient. We can limit` to be one of∼ 22J

possibilities (requiring∼ J bits to code) and still have (11) hold.
Using another∼ J bits to quantize theJ/2 wedgeprint coeffi-
cients, we useRϕ ∼ J2J/2 total bits while incurring distortion
Dϕ ∼ 2−3J/2.

The last component to consider is the indexing cost: the num-
ber of bits required to specify which wavelets and wedgeprints
are being used. Assigning a symbol from{Prune, Wavelet,
Wedgeprint} to each node in the quadtree requires less than2 bits
per coefficient. Since all of the basis functions live on a connected
tree, we can code all of these symbols usingRindexing ∼ 2J/2

bits.
In summary, we have an overall rate of

R = Rwavelets +Rϕ +Rindexing ∼ J2J/2 (19)

with distortion

D ≤ Errortotal +Dwavelet +Dϕ ∼ 2−J . (20)

Combining (19) and (20)

D(R) ∼
(logR)2

R2
(21)

we see that our simple wavelet-wedgelet coder achieves nearopti-
mal asymptotic rate-distortion performance.



3. SELECTING THE WAVELET-WEDGEPRINT
REPRESENTATION

We have shown that there exists a configuration of wavelets and
wedgeprints that closely approximates aC2/C2 image. This
section addresses the more practical problem of finding a good
wavelet-wedgeprint representation for a given image.

We are able to capture the contours in the image at fine scales
using very few wedgeprint functions. Of course, a coding (orother
processing) algorithm would not know the locations of the con-
toursa priori. The encoder needs to make decisions about where
to place the wavelets and wedgeprints dynamically.

Fortunately, the structure of the wavelet-wedgeprint dictionary
allows us to formulate and solve an optimization problem to find
the best configuration for a given image. For simplicity, we will
discuss the approximation problem where the complexity of the
representation is simply the number of terms. We refer to [12] for
the implementation of an actual image coder.

Given an image and anN , we wish to find the best (smallest
error)N -term configuration of wavelets and wedgeprints. Putting
the problem in Lagrange form, we wish to solve

min (Error + λN) (22)

Since the atoms chosen for the representation lie on a con-
nected tree and we restrict wedgeprints to live on the leavesof this
tree, (22) can be solved efficiently with the classical CART dy-
namic programming algorithm [13]. CART makes a single sweep
up the quadtree; at each node, the local cost in error of pruning
below this node is weighed against the savings in rate. By passing
these decisions upwards through ancestor nodes, we can find the
wavelet-wedgeprint tree that globally maximizes (22).

It is worth noting that in the end, the encoder cares little about
the actual contour locations in the image. It simply tries tomini-
mize (22) for a givenλ. However, the encoder will tend to choose
wavelets over smooth regions and wedgeprints over linear contour
regions, because the local rate-distortion tradeoff is favorable. The
encoder thus naturally adapts to the geometrical structurein the
image and does not rely on any pre-processed edge detection.

Figure 4 shows approximations of the “Cameraman” test im-
age using standard wavelet tree pruning and wavelet-wedgeprint
tree pruning. Using the wavelet-wedgeprint dictionary, weachieve
significant gains both visually (sharper edges and reduced ringing)
and in peak signal-to-noise ratio while using 30% fewer terms in
the approximation.

We can also tie the orientations of the wedgeprints together
along a contour, making them even cheaper to code. A Markov
multiscale geometry model [10] can be incorporated into these-
lection of the representation; the optimal tree pruning with respect
to this model is found using the Viterbi algorithm.

4. CONCLUSIONS

We have developed a new framework for “multiscale geomet-
ric image processing” that leverages the best of wavelets for
representing smooth image regions and wedgelets for represent-
ing smooth edge contours. ForC2/C2 images, the combined
wavelet/wedgeprint dictionary provides optimal asymptotic ap-
proximation performance, and a simple prototype image coder
provides near-optimal rate-distortion performance. While we have
used compression to illustrate the effectiveness of our approach, a
statistical wavelet/wedgeprint model will enable new algorithms
for estimation, detection, classification, segmentation and other

(a) (b)

Fig. 4. (a) Wavelet pruning of “Cameraman” (N=7359,
PSNR=28.77dB), (b) Wavelet-wedgeprint pruning (N=5158,
PSNR=30.27dB).

statistical image processing tasks. These are currently under in-
vestigation.
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