
Geometric methods for wavelet-based image compression

Michael Wakin, Justin Romberg, Hyeokho Choi, Richard Baraniuk

Dept. of Electrical and Computer Engineering, Rice University

6100 Main St., Houston, TX 77005

ABSTRACT

Natural images can be viewed as combinations of smooth regions, textures, and geometry. Wavelet-based image
coders, such as the space-frequency quantization (SFQ) algorithm, provide reasonably efficient representations
for smooth regions (using zerotrees, for example) and textures (using scalar quantization) but do not prop-
erly exploit the geometric regularity imposed on wavelet coefficients by features such as edges. In this paper,
we develop a representation for wavelet coefficients in geometric regions based on the wedgelet dictionary, a
collection of geometric atoms that construct piecewise-linear approximations to contours. Our wedgeprint repre-

sentation implicitly models the coherency among geometric wavelet coefficients. We demonstrate that a simple
compression algorithm combining wedgeprints with zerotrees and scalar quantization can achieve near-optimal
rate-distortion performance D(R) ∼ (logR)2/R2 for the class of piecewise-smooth images containing smooth C2

regions separated by smooth C2 discontinuities. Finally, we extend this simple algorithm and propose a complete
compression framework for natural images using a rate-distortion criterion to balance the three representations.
Our Wedgelet-SFQ (WSFQ) coder outperforms SFQ in terms of visual quality and mean-square error.

Keywords: Image compression, wavelets, wedgelets, edges, geometry

1. INTRODUCTION

1.1. The wavelet transform: Models and algorithms

Effective methods for transform-domain image compression rely on the successful interplay of three related
components: a transform with desirable properties, accurate models for the transform coefficients, and efficient
compression algorithms that operate according to the models. From a practical standpoint, transform coefficients
for images of interest should exhibit a certain structure, or behavior that can be well modeled. Ideally, such
models should also lead to fast, efficient processing algorithms; hidden Markov trees (HMTs) are one example
where the organization of a model leads naturally to an elegant suite of signal processing algorithms.1

The wavelet transform is a key ingredient in most state-of-the-art image compression algorithms,2–5 including
the recent JPEG-2000 standard.6 Historically the use of wavelets in image processing arose primarily due to the
success of wavelets in one-dimensional (1-d) signal processing. The wavelet transform provides a multiscale
analysis that is localized in both space and frequency; due to this arrangement, 1-d wavelets provide efficient
representations for the large and useful class of piecewise-smooth 1-d signals. Smooth components of these signals
are well-localized in the frequency domain, while point singularities at discontinuities are localized spatially. As a
result, the 1-d wavelet transform of a piecewise-smooth signal is sparse: most of the signal energy is captured by
a few large wavelet coefficients. Reconstructing the signal using only these few wavelet coefficients can provide
a very accurate “nonlinear approximation” of the original signal.7

JPEG-2000 and most other wavelet-based image coders employ separable two-dimensional (2-d) filterbanks
that are a simple extension of 1-d techniques. As with 1-d wavelets, the 2-d wavelet coefficients can be interpreted
and modeled using a tree-structured space-frequency representation. The convenience of tree-structured modeling
has been exploited in a variety of wavelet-based compression algorithms.2, 3, 5 Despite the popularity of wavelet-
based approaches to compression, however, 2-d wavelets fail to provide sparse representations for geometric
regions, a very important class of image features.

Email: {wakin, jrom, choi, richb}@rice.edu. Web: dsp.rice.edu. This work was supported by the National Sci-
ence Foundation grants CCR–9973188, ONR grant N00014-02-1-0353, AFOSR grant F49620-01-1-0378, and the Texas
Instruments Leadership University Program.



1.2. The challenge of geometry

Natural images can be viewed as collections of geometric, smooth, and textured regions.∗ Geometric features,
such as edges, generally indicate transitions between smooth or textured regions and are characterized by abrupt
changes in intensity that persist along straight or curved contours. Edges communicate important information,
conveying the location and shape of pictured objects and many of their features. In addition, because pixel
values vary rapidly in the direction orthogonal to an edge, much of an image’s high-frequency energy may come
from edges. For these reasons, a successful algorithm for image compression must efficiently encode geometric
features.

Unfortunately, the desirable nonlinear approximation performance of 1-d wavelets does not carry over to
geometric 2-d image features. As with 1-d wavelets, 2-d wavelets do provide efficient approximations for smooth
regions and point singularities. In the case of an edge, however, where a singularity extends along a contour,
the number of 2-d wavelet basis functions overlapping the singularity grows exponentially at finer scales; many
wavelet coefficients are required to reconstruct even a simple, straight edge.8

The abundance of significant coefficients describing geometry is not an immediate barrier to effective wavelet-
domain image processing (including compression, in particular). There is, in fact, a strong coherency among the
coefficients which is imposed by the structure of the geometry. In the case of an isolated, sharp edge, for example,
the 1-d information describing the trace of the edge contour completely determines the values of the 2-d wavelet
coefficients. In theory, this coherency could be accurately exploited in a wavelet-domain model. Due in part to
a lack of shift-invariance for real 2-d wavelets, however, the coherency is quite difficult to model. Most wavelet-
domain algorithms resort instead to modeling collective quantities such as the variance of the coefficients (see,
for example, Ref. 4); of course, this simplification has a direct impact on compression performance. A simplified
model not only affects rate-distortion (R-D) efficiency, but also leads to ringing artifacts when quantization
disrupts the geometric coherency of the coefficients.

Faced with the challenges presented by geometric features, two clear options are available: the first is to
develop a new transform that includes properties such as sparse representations for geometry; the second is to
improve the wavelet-domain models and algorithms accordingly. We briefly review below recent work that has
focused on pursuing each of these options. As the first option currently faces several practical difficulties, we
pursue in this paper the second.

1.2.1. Option 1: Develop alternate transforms

Recent work in harmonic analysis has focused on developing transforms that provide sparse representations for
certain geometric image classes. Candès and Donoho define curvelets,8 a nonadaptive transform that provides
nearly optimally sparse representations for piecewise-smooth images. The contourlets of Do et al.9 comprise a
filter-bank implementation of a similar transform. Although these representations overcome the poor nonlinear
approximation performance of 2-d wavelets, it is not clear how to apply them to such tasks as image compression.
One difficulty is redundancy: these overcomplete transforms produce a collection of coefficients that is larger
than the number of pixels in the original image. In addition, these transforms are designed specifically to account
for geometry; modeling their behavior in non-geometric regions may prove to be difficult.

Interestingly, decompositions using the dual-tree complex wavelet transform10, 11 show much better properties
regarding geometric analysis than do those using standard real wavelets. Complex wavelets exhibit improved
shift invariance properties, and although the transform coefficients are not sparse in geometric regions, there exist
distinct correlations between coefficient magnitudes and phases and edge orientation and position, respectively.
These properties lead to improved geometric modeling,12 but the dual-tree transform is four-times overcomplete.†

Steerable pyramids15 provide both shift invariance and rotational invariance but at the cost of an even greater
degree of redundancy. Despite the analysis properties of each of these representations, their redundancy currently
poses a barrier to efficient compression algorithms.

∗We loosely define textured regions as those that do not fit into the other two categories, or which contain complicated
combinations thereof.

†Nonredundant implementations have been developed for complex wavelets but are currently less amenable to geometric
modeling.13, 14



1.2.2. Option 2: Improve wavelet-domain models

Additional work has recently focused on improving models and algorithms for wavelet-based image compression.
Some approaches have attempted to encode geometric contour information separately from the remaining 2-d
features. Bandelets,16 for example, use 1-d wavelets to encode the 1-d contour information, and then warp a
2-d wavelet basis around that contour to capture the remaining information. In Ref. 17, Froment uses level
lines to encode the geometry of an image and wavelet packets18 to represent the remaining features. Shukla et

al.19 develop an efficient prune-join quadtree algorithm for compressing piecewise-smooth images with piecewise-
smooth contours; such an approach could be combined with a second stage for compressing residual texture
information. Although these approaches have achieved moderate success in modeling geometry, they generally
do not provide a complete solution for natural image compression. Specifically, a complete image coder must
successfully balance geometric descriptions with smooth and texture encodings. Few solutions have examined
the R-D impacts of their classifications or considered the problem of optimally allocating bits among the different
representations.

1.3. Contributions

In this paper, we propose a novel multiscale three-part model for 2-d wavelet coefficients that accounts for ge-
ometric, smooth, and textured image features. Tree-structured modeling provides a convenient framework for
choosing among different encoding strategies and naturally leads to an algorithm for making optimal classifica-
tions. We demonstrate that a simple image coder based on our model can achieve near-optimal R-D performance
for the class of piecewise-smooth images containing C2 regions separated by C2 discontinuities. In addition, we
extend this concept to a more practical setting and present a complete compression algorithm for natural images
that optimizes bit allocation among the three representations.

Section 2 describes our wavelet-domain models for smooth, textured, and geometric image regions. The
smooth and textured models are motivated by the space-frequency quantization (SFQ) compression algorithm;5

SFQ uses a mix of zerotrees (for smooth regions) and scalar quantization (for texture regions) to compress
a quadtree wavelet decomposition and relies on an efficient tree-pruning algorithm to find the R-D optimal
configuration of the two. We introduce a representation for wavelet coefficients in geometric regions based on the
wedgelet dictionary,20 a collection of geometric atoms that construct piecewise-linear approximations to contours.
Our wedgeprint representation implicitly models the coherency among geometric wavelet coefficients. We analyze
the potential R-D performance of an image coder combining wedgeprint representations with zerotrees and scalar
quantization.

In Section 3, we enhance our geometric model with an emphasis on practical performance. We present
a method for encoding wedgelets jointly, and we focus on the problem of determining the optimal wedgelet
representation for an image region. The resulting wedgeprints are able to model more complicated instances of
geometry.

In Section 4, we present our Wedgelet-SFQ (WSFQ) compression algorithm that uses an R-D criterion to
optimize its its bit allocation among geometry, smooth, and texture representations. In Section 5, we present per-
formance results for WSFQ. The compression gains we achieve over SFQ illustrate the true promise of geometric
compression techniques. We conclude in Section 6 with a final discussion.

2. WAVELET-DOMAIN MODELS

2.1. Dyadic blocks, wavelets, and quadtrees

In this section, we develop wavelet-domain models for textured, smooth, and geometric image regions. Due to
the dyadic nature of the wavelet decomposition, we find it convenient to organize our models in the context of
2-d wavelet quadtrees.7 The 2-d wavelet transform is typically arranged in three subbands, corresponding to the
vertical, horizontal, and diagonal orientations of the wavelet basis functions. Each subband can be organized
into a quadtree, as described below.

In the quadtree interpretation of the 2-d wavelet transform, each node i is labeled with a wavelet coefficient
wi, where the corresponding wavelet basis function ψi has approximate support on a square, dyadic block Bi in
the image. The width of this block is given by M = 2−`N , where ` is the depth of node i in the quadtree, and
N is the width in pixels of the square image (assumed to be a power of two).



Except at the finest level, each node has four children representing M
2 ×

M
2 dyadic blocks that combine to

tile the same M ×M image block as their parent. The set of the four children of node i is denoted Ci, and the
subtree of all descendants of node i is denoted Ui (note that this does not include node i).

Each of the three directional subbands comprises a quadtree that spans the entire image. In particular, every
dyadic block in the image has one corresponding node in each of the three quadtrees. In this paper, we encode
each directional subband as its own independent quadtree.

2.2. Scalar quantization for textured regions

In this paper, we define “texture” somewhat loosely, and allow it to include any features that are not otherwise
well characterized. Similarly, we place few specifics in the wavelet-domain texture model. Although we believe
that more sophisticated models may be developed for particular kinds of texture, we find the generality of our
model helpful for combining it with other models.

Suppose node i has support on a dyadic image block Bi that is characterized as texture. Then we assume
the wavelet coefficient wi has uniform probability distribution

pwi
(wi) ∼ U [−Z,Z]

for some known bound Z. We assume that this coefficient is statistically independent of neighboring coefficients.

Under this simple model, a uniform scalar quantizer provides a reasonably efficient and practical compression
scheme for texture wavelet coefficients. We note here that such a coder requires bits to encode the quantization
bin, and results in a distortion related to the quantization step-size.

2.3. Zerotrees for smooth regions

Several mathematical characterizations exist for the notion of smoothness; in general such definitions involving
wavelets refer to the decay rate of wavelet coefficients through scale.7 In this paper, we refrain from adopting
a rigid definition for “smoothness,” but intuitively we expect smooth image regions to result in small wavelet
coefficients.

Suppose node i has support on a dyadic image block Bi that is characterized as smooth. Because all
nodes descending from i can also be characterized as smooth, our model simply assumes that wi = 0 and that
wj = 0, ∀j ∈ Ui. This model does not incorporate probability; it is simply a fixed approximation to the wavelet
coefficients in smooth regions. This tree-structured approximation is popularly known as a zerotree.2 Encoding
a zerotree requires very few bits and results in distortion equal to the energy of the approximated coefficients.

A combination of zerotrees and scalar quantization is sufficient to implement an image coder. Indeed, these
are essentially the two ingredients of Shapiro’s EZW coder.2 In our terminology, the EZW coder classifies as
smooth any image regions where all wavelet coefficients fall below some threshold. Other image regions (including
those containing isolated instances of large wavelet coefficients) are classified as texture.

More recently, the space-frequency quantization (SFQ) coder5 employs the same two encoding strategies but
with a more refined method of classification. In SFQ, classification into smooth and textured regions is performed
using a bottom-up tree-pruning algorithm. This tree-pruning algorithm finds the R-D near-optimal configuration
of zerotrees. A standard SFQ optimization generally results in the use of zerotree symbols to represent smooth
regions and low-energy features, with scalar quantization used to code high-energy features such as edges.

Despite its success — SFQ outperforms JPEG-2000 at most rates — the SFQ coder fails to model the joint
behavior of wavelet coefficients along an edge. The model of independently distributed wavelet coefficients that
is used within geometric regions clearly neglects the inherent structure in such regions. In the following sections,
we develop a model that captures the joint behavior of geometric wavelet coefficients and explain how this model
can be integrated into an R-D optimized compression algorithm such as SFQ.



m1

m2

(a) (b) (c) (d)

Figure 1. (a) Wedgelet parameterization on an M × M dyadic block: a position index k describes the endpoints of the
edge, and m1 and m2 specify the grayscale intensities on each side. (b) Picture of a wedgelet, M = 32. (c) Example of
a simple “cartoon image.” (d) A wedgelet decomposition divides the domain of an image into dyadic squares, using a
piecewise-constant function in each square to approximate the image.

2.4. Wedgeprints for geometric regions

We begin by modeling the simplest possible kind of geometry: an isolated, straight, sharp edge. The wedgelet

dictionary, introduced by Donoho,20 provides a convenient framework for developing our model. A wedgelet

W(B; k,m1,m2) is a dyadic block B containing a picture of a single straight edge. As shown in Fig. 1(a,b), the
edge separates two constant regions of grayscale intensity m1 and m2; pixel values along the edge are computed
by an appropriate weighted averaging. We restrict the allowable endpoints of the edge so that its position may
be indexed by a single discrete parameter k ∈ {1, 2, . . . ,K}. The wedgelet dictionary is the collection of all
possible wedgelets on all dyadic blocks. The task of organizing a convenient dictionary is discussed in Ref. 21.

In our simplified task of modeling straight, sharp edges, a typical instance of “geometry” on a dyadic image
block would resemble a wedgelet in the spatial domain. Due to the relatively localized support of the wave-
let basis functions, we can obtain a reasonable approximation to geometric wavelet coefficients by taking the
wavelet transform of a wedgelet. To be more precise, assume node i has been classified as geometry. After
choosing the appropriate wedgelet parameters, we construct a wedgeprint for node i by projecting the wedgelet
W(Bi; k,m1,m2) onto the subspace spanned by the basis functions ψi and {ψj : j ∈ Ui}. Each wedgelet, there-
fore, may generate up to three distinct wedgeprints (one in each directional subband); as discussed in Sec. 2.1,
we consider each one individually.

Wedgeprints can be used as a tool for representing groups of wavelet coefficients; the single wedgeprint
described above approximates coefficient wi and all of its descendants. In addition, wedgeprints implicitly model
the geometric coherency among wavelet coefficients. As shown in Fig. 2, wedgeprint representations leave few
ringing artifacts around the approximated edges. Through its underlying wedgelet parameters, the wedgeprint
representation can be adapted to local geometry. To use a wedgeprint for compression, only the wedgelet
parameters {k,m1,m2} must be encoded; the decoder can use these to reconstruct the entire subtree of wavelet
coefficients. Wedgeprints are similar to zerotrees — large numbers of wavelet coefficients are efficiently encoded
with few parameters — but wedgeprints do so in the high-energy regions near edges.

The wedgeprint construction is similar to the approach by Dragotti et al. in developing the footprints
dictionary,22 a collection of scale space vectors that model wavelet coefficients at singularities in 1-d piecewise-
polynomial signals. Our 2-d implementation is different, however, from the edgeprints presented in Ref. 23 where
footprints are applied separately to the rows and columns of a 2-d image.

Wedgeprints can also be used to model more sophisticated instances of geometry. Contours in an image can
be approximated by a wedgelet decomposition, a tiling of wedgelets chosen from the wedgelet dictionary (see
Fig. 1(c,d)). In Sec. 3, we discuss the possibility of jointly encoding wedgelet parameters. In Sec. 4, we construct
more descriptive wedgeprints by projecting entire wedgelet decompositions to the wavelet domain.

2.5. Theoretical compression performance

By adding the wedgeprint representation to zerotree and scalar quantization techniques, we significantly improve
the potential performance of an image coder. As an illustration, we consider the problem of encoding synthetic



B
i

B
i

(a) (b)

Figure 2. (a) Portion of an image containing a wedgelet through the dyadic block Bi. (b) Spatial domain picture of the
wedgeprint on Bi constructed by keeping only the wavelet coefficients on the vertical-band subtree rooted at i.

continuous images of type “C2/C2.” The class C2/C2 contains images X(t1, t2) defined on the unit square [0, 1]2

that can be constructed as follows

X(t1, t2) = X1(t1, t2) ·Hc(t1, t2) +X2(t1, t2) · (1−Hc(t1, t2)),

where the components X1, X2 are smooth

X1(t1, t2), X2(t1, t2) ∈ C
2([0, 1]2),

and Hc is a Horizon-class image20 with a smooth discontinuity

Hc(t1, t2) =

{
1, t2 > c(t1)
0, t2 ≤ c(t1),

c(t1) ∈ C
2([0, 1]).

In words, C2/C2 images contain two smooth regions separated by a smooth discontinuity.

Clearly, such images are simple to describe; only one smooth 1-d function and two smooth 2-d functions are
needed to fully represent an image. An oracle coder could use 1-d wavelets to encode the function c, and 2-d
wavelets to encode the images X1 and X2. From the analysis presented in Refs. 24, 25, it follows that an oracle
coder could achieve asymptotic R-D behavior D(R) ∼ R−2.

In practice, of course, image coders must function without the oracle information. As discussed in Sec. 1.2,
most current wavelet-based image coders would fail to exploit the simplicity of these images, spending too many
bits to encode the smooth edge discontinuity. In Ref. 25, we demonstrate that, using a proper arrangement
of scalar quantizations, zerotrees, and wedgeprints, a simple image coder can achieve the asymptotically near-
optimal rate distortion performance D(R) ∼ (logR)2/R2. In this arrangement, a series of wedgeprints is used to
construct a piecewise-linear approximation to the discontinuity. Scalar quantization is used for wavelet coefficients
at coarse scales, while zerotrees are used for the fine-scale wavelet coefficients in smooth regions.

This result illustrates the potential effectiveness of wedgeprint representations when combined with the ap-
propriate compression techniques for smooth and textured regions. A few practical issues must be addressed,
however, before transcribing these ideas to a natural image coder. First, we prefer to more fully develop our
geometric model. In particular, we believe that some practical (though perhaps not asymptotically significant)
gains can be made by jointly encoding wedgelet parameters. These refinements are discussed in Sec. 3. Second,
our result in Ref. 25 establishes only the existence of an efficient representation. The encoder must have an
effective method for finding the proper balance of scalar quantization, zerotrees, and wedgeprints. Building upon
the tree-pruning algorithm of the SFQ coder, we present in Sec. 4 our Wedgelet-SFQ (WSFQ) coder. The WSFQ
algorithm uses a tree-pruning R-D optimization to find the proper balance among the three options.

3. ENHANCING GEOMETRIC MODELS

Consider a node i in the wavelet quadtree. In Sec. 2.4, we obtained a wedgeprint for the wavelet coefficient
subtree rooted at i by constructing a single wedgelet on the dyadic block Bi and projecting to the wavelet



(a) (b) (c) (d) (e)

Figure 3. (a) A wedgelet decomposition can be interpreted as a pruned quadtree, where each node includes a set of
wedgelet parameters and leaf nodes specify the pictured wedgelets. (b) Wedgelet on a dyadic block. (c) Predictions for the
block’s children, considered to be their most likely configuration. (d) A slightly less likely configuration for the children.
(e) A significantly less likely configuration.

domain. A single wedgelet is not the only available description for the geometry on Bi, however. In particular, a
wedgelet decomposition could also be used, allowing a tiling of wedgelets to more precisely describe the geometry
on Bi. Projecting such a description to the wavelet domain, we would achieve a more precise approximation to
the wavelet coefficients descending from i. Such an approach may be beneficial if an efficient method can be
developed for encoding a wedgelet decomposition.

In this section, we first extend our wedgelet dictionary to parameterize the smoothness of the edge profile. We
then present a method for jointly encoding the wedgelets in a wedgelet decomposition. We also discuss a technique
for finding the R-D optimal wedgelet decomposition on a particular dyadic block. Our WSFQ coder, explained
in Sec. 4, uses the wedgeprints that result from projecting these optimized local wedgelet decompositions into
the wavelet domain.

3.1. Parameterizing edge profile smoothness

To allow for more flexible wedgelet descriptions, we include a notion of smoothness across the profile of the edge.
A sharp edge, for example, makes an abrupt step-edge transition from m1 to m2 in the profile (see Fig. 1(a)).
Alternatively, a smooth (or blurred) edge may take several pixels to transition from m1 to m2. There are many
possible methods for parameterizing this smoothness. For the purposes of this paper, we will simply include a
parameter s that specifies the smoothness of the pictured wedgelet. In practice, we first construct a picture of a
sharp wedgelet and then apply a blurring filter specified by s.

3.2. Jointly encoding wedgelet decompositions

As shown in Fig. 3(a), a dyadic wedgelet decomposition can be interpreted as a pruned quadtree, where each
node i includes a set of wedgelet parameters Θi describing the corresponding dyadic block Bi. In such a quadtree,
each node includes a map symbol ηi ∈ {L, I} indicating whether the node is a leaf or interior node. Leaf nodes
are used to assemble the picture of the wedgelet decomposition, while interior nodes are useful for predicting
and encoding parameters at the leaf nodes. Finer approximations to a contour can be obtained by dividing a
leaf node into four children.

We implement a top-down, predictive scheme for encoding a wedgelet decomposition, using a simple Markov-
1 model that captures the dependency of a wedgelet orientation on the wedgelet encoded at its parent node
(see Figs. 3(b)-(e)). Our algorithm exploits the redundancy among wedgelet parameters that results because a
node and its four children describe the same spatial location. Thus, once a wedgelet has been encoded for a
node, we can obtain predictions for the wedgelets at its four children by drawing a picture of the wedgelet and
dividing the picture into four quadrants. In practice, this is accomplished with a simple lookup when using the
dictionary in Ref. 21. We encode the actual children wedgelets according to a conditional probability model on
the Hausdorff distance δ(k, k̂) between the true and predicted wedgelets. The complete algorithm for encoding
a wedgelet decomposition follows.

Step 1. Encode {m1,m2, s}, which are assumed constant for the entire quadtree.



Step 2. Let i be the root node of the quadtree. Encode the wedgelet index ki and map symbol ηi. If ηi = L,
then terminate. Otherwise, let ` = 0.

Step 3. For every node α at level ` such that ηα = I, perform the following for each j ∈ Cα:
1. Predict k̂j from kα.

2. Encode the wedgelet index kj given its prediction k̂j using entropy coding according to the distribution

p(kj |k̂j) ∼ e
−γδ(kj,

�

kj).

3. Encode ηj . If ηj = L, then assume ηx = L for all x ∈ Uj.

Step 4. Increment `← `+ 1. Repeat Step 3 until ` exceeds the depth of the quadtree.

In Step 3.2, γ > 0 is a constant that controls the preference given to accurate predictions. According to this
distribution, accurate predictions require few bits to encode, while large prediction errors are more costly. As
a result, the R-D performance of this predictive coder depends on the regularity of the approximated contour.
This intuitively satisfying behavior is not demonstrated by most 2-d wavelet-based coders.

3.3. Optimizing the wedgelet decomposition

We use a Viterbi-like algorithm to find a near-optimal wedgelet decomposition, under an R-D criterion. Letting R
and D be the total rate and squared-error distortion incurred by encoding a wedgelet decomposition, respectively,
we fix a Lagrangian parameter λ and seek the wedgelet decomposition minimizing D + λR. The optimization
algorithm iterates between two stages: tree-pruning and parameter estimation. The tree-pruning stage operates
similar to Donoho’s dynamic programming method for complexity-penalized tree-pruning,20 using a bottom-up
technique for determining leaf nodes. In addition, however, our method chooses the R-D optimal wedgelet index
at each node. The parameter estimation stage uses the geometry of the pruned tree to obtain new estimates for
{m1,m2, s}.

4. WEDGELET-SFQ FOR NATURAL IMAGE COMPRESSION

We now apply all of the above ideas and develop Wedgelet-SFQ (WSFQ), an algorithm for natural image com-
pression that combines the two-class SFQ strategy with a representation and model for geometric compression.
WSFQ incorporates scalar quantization, zerotrees, and wedgeprints, and uses a bottom-up tree-pruning to find
the R-D near-optimal balance among the three options. Many of the implementation details of WSFQ follow
naturally from the SFQ algorithm; Ref. 5 contains a detailed explanation of the SFQ coder. We present in this
section the relevant details of the WSFQ coding algorithm and optimization scheme; performance results are
presented in the following section.

4.1. WSFQ quantization strategies

After determining the proper classification of image regions into smooth, texture, and geometry, WSFQ encodes
each of the three directional wavelet quadtrees in a single pass from the top down.‡ For each node i, WSFQ
encodes a map symbol ni ∈ {S,T,G} indicating the quantization strategy for descendants of that node. The
quantization scheme for a given wavelet coefficient is actually specified by one of its ancestors, a small deviation
from the conventions used in previous sections of this paper.

For smooth regions, symbol ni = S indicates zerotree quantization. Under zerotree quantization, all descen-
dants Ui are quantized to zero. No further information (including map symbols) is encoded for these nodes.

For textured regions, symbol ni = T indicates scalar quantization. This symbol specifies that the four children
Ci are significant: a scalar quantization bin is encoded for each. All significant wavelet coefficients are quantized
uniformly with a common uniform scalar quantizer; the quantization step-size q is optimized for the target rate.
The symbol ni = T dictates the quantization strategy only for nodes in Ci; an additional map symbol is encoded
at each child to describe the quantization of its descendants.

‡Scaling coefficients are coded separately; our approach is mentioned in Section 5, but the particular details are not
relevant to the WSFQ algorithm.



B

B

B’

U

UUh d

v
h d

v

(a) (b)

Figure 4. Obtaining a wedgeprint. (a) After a wedgelet decomposition is encoded for a dyadic block B, we create a
larger block B′, using linear extensions for the edges at the border of B. (b) Taking the wavelet transform of B′, we may
extract any of the subtrees of wavelet coefficients Uv , Ud, Uh, where nodes v, d, h have support on the block B.

For geometric regions, symbol ni = G indicates the use of a wedgeprint. In this situation, the encoder
constructs and encodes a wedgelet decomposition for the block Bi, and the resulting wedgeprint is used to
infer the descendant wavelet coefficients on the subtree. For each j ∈ Ui, we denote the implied wedgeprint
coefficient as w∗

i,j . The wedgelet decomposition is constructed and encoded using the techniques of Sec. 3. For
our purposes, it is not necessary to encode both m1 and m2 explicitly; the contrast m2 −m1 alone will suffice.
We denote by RWi

the rate required to encode the wedgelet decomposition at node i.§ To obtain the wavelet
transform of the wedgelet decomposition while minimizing border artifacts, we create a larger temporary block
containing the coded wedgelet decomposition at the appropriate location, take its wavelet transform, and extract
the appropriate wavelet coefficients. This process is illustrated in Fig. 4.¶

4.2. WSFQ tree-pruning

To obtain a near-optimal configuration of the three quantization symbols, we use a generalization of the SFQ
tree-pruning algorithm. Optimization in WSFQ is performed in two stages: Phase I iteratively prunes the tree
based roughly on the rate and distortion costs of quantization, while Phase II adjusts the configuration to account
for the rate cost of encoding the map symbols.

4.2.1. Phase I: Quantization costs

Phase I tree-pruning starts at the bottom of the tree and proceeds upward. In the beginning, it is assumed that
all coefficients are scalar quantized, and decisions must be made regarding whether to use zerotree or wedgeprint
representations. The coder uses several bottom-up iterations until the tree-pruning converges. At the beginning
of each iteration, the coder estimates the probability density p of the collection of significant coefficients; this
yields an estimate of the entropy (and hence coding cost) of each scalar quantization. Ultimately, we use adaptive
arithmetic coding26 to encode these quantization bin indices.

During each iteration of the Phase I optimization, only nodes currently labeled significant are examined. The
coder has three options at each such node i: create a zerotree (symbol ni = S), maintain the significance (symbol
ni = T), or create a wedgeprint (symbol ni = G). Each option requires a certain number of bits for quantization
and results in a certain distortion relative to the true wavelet coefficients; the coder chooses the option that
minimizes the total R-D impact on the subtree descending from node i. The first option, zerotree quantization

of the subtree of descendants, requires R
(S)
i = 0 bits, because no information is encoded besides the map symbol.

By quantizing all coefficients in Ui to zero, this option results in distortion

D
(S)
i =

∑

j∈Ui

wj
2.

§Up to three subbands may request a wedgelet decomposition for the same dyadic block. In such a case, it is encoded
only once, but for simplicity, we do not reduce the anticipated cost RWi

.
¶Because the wavelet basis functions are not perfectly localized, this process does introduce a small amount of error

that was not considered in pruning the wedgelet decomposition.



The second option is to send a significance symbol for ni as well as the quantization bins for {wj : j ∈ Ci}.
For this option, we must consider the (previously determined) rate and distortion costs of nodes in Ci as well.
Letting ŵj denote a wavelet coefficient quantized by step-size q, we have

R
(T)
i =

∑

j∈Ci

− log2 [p(ŵj)] +
∑

j∈Ci

Rj .

This option results in distortion

D
(T)
i =

∑

j∈Ci

(wj − ŵj)
2 +

∑

j∈Ci

Dj .

The third option is to send a wedgeprint symbol for ni, encode a wedgelet decomposition, and use the corre-
sponding wavelet coefficients as the quantized values for descendants of node i. Unlike the cases ni = S or T,
which we expect to be relatively common, we expect relatively few wedgeprint symbols to be encoded, since each
one represents many possibly significant coefficients. Each wedgeprint map symbol therefore requires a nontrivial
amount of added bit rate to encode. We find it useful, then, to consider a rough estimate ρG of the probability of
sending symbol G. Choosing a suitably low value for ρG, it follows that the Phase I rate cost for the wedgeprint
option is given by

R
(G)
i = − log2 [ρG] +RWi

and the resulting distortion is simply

D
(G)
i =

∑

j∈Ui

(wj − w
∗
i,j)

2
.

The decision between the three options is made to minimize the Lagrangian cost Ji = Di + λRi, where λ is an
optimization parameter controlling the trade-off between rate and distortion (the same value of λ is used for
pruning the wedgelet decompositions for wedgeprints).

After optimizing the symbol ni, the tree-pruning proceeds upward. Once the top of the tree is reached, the
process repeats from the bottom-up if any significant map symbols have changed. Convergence is guaranteed
because the number of significant coefficients can only decrease. The Phase I tree-pruning algorithm converges
to a near-optimal configuration of map symbols (see Sec. 5 for performance results). As discussed in Ref. 5,
the constantly changing distribution of significant coefficients affects R-D costs everywhere and may prevent a
bottom-up tree-pruning algorithm from finding the globally optimal solution.

4.2.2. Phase II: Map symbol costs

Phase II adjusts the tree-pruning to better account for the costs of encoding map symbols.‖ These costs are
obtained by considering how the symbols will be encoded. Specifically, in the top-down encoding of the quadtree,
map symbols are predicted based on the variance of local, causal quantized wavelet coefficients. Low variances
indicate the likelihood of symbol S, while high variances indicate the likelihood of symbols T and G. We encode
whether a particular symbol is S according to this expected behavior, and we then distinguish between symbols
T and G using adaptive arithmetic coding. Phase II adjusts the tree-pruning to better account for the first of
these costs, scanning the quadtree to determine if any nodes should be changed to (or from) symbol S. A switch
is made if the savings in map symbol rate exceeds the loss in Phase I R-D efficiency.

4.3. Residual compression

When a wedgeprint is used to represent a wavelet subtree, it provides an approximate description of the local
image geometry. This approximation produces errors, however, and as a matter of practicality, we wish to correct
as many errors as efficiently possible.∗∗ As an attempt at correcting geometric errors, we implement standard
SFQ compression on each residual subtree resulting from a wedgeprint. Thus, encoding a symbol ni = G involves
the following additional steps:

Step 1. Encode the wedgelet decomposition and compute the wedgeprint coefficients {w∗
i,j : j ∈ Ui}.

‖Our Phase II implementation closely follows that in Ref. 5.
∗∗Correcting these errors was not necessary to obtain the near-optimal asymptotic R-D performance in Ref. 25.



(a) (b)

Figure 5. (a) Synthetic test image, and (b) portion of Peppers test image used in compression experiments.

Step 2. Compute the residual error subtree Ei = {ei,j : j ∈ Ui} where ei,j = wj − w
∗
i,j .

Step 3. Prune and encode the subtree Ei using symbols S and T of SFQ, with the same parameter λ,
quantization step-size q, and probability model p used elsewhere.

Step 4. Add the quantized residual Ẽi to the wedgeprint coefficients for the final encoded values.

The complete R-D cost for this procedure is computed before determining the symbol ni.

SFQ enables a spatially adaptive approach for encoding the residual subtree. The zerotree symbol gives the
residual coder the option of ignoring geometric artifacts that it cannot efficiently compress. Due to the flexibility
of SFQ, some textures away from the edges in Bi may still be encoded.

5. RESULTS

We implemented both SFQ and WSFQ using MATLAB. For each image, we performed a 4-level wavelet decom-
position using biorthogonal 10-18 wavelets.27 SFQ and WSFQ provide methods for encoding the three directional
wavelet coefficient subtrees; any efficient technique may be used to compress the scaling coefficients separately.
For both SFQ and WSFQ, we compressed the scaling coefficients in a raster scan, predicting each coefficient
from its quantized causal neighbors. The prediction errors were quantized and encoded, with quantization opti-
mized for a generalized Gaussian distribution. For comparison purposes, we also compressed images using the
wavelet-based JPEG-2000 coder.28

5.1. Artificial images

For an example of the effectiveness of wedgeprint representations, we first constructed a synthetic 256 × 256
image consisting of a sharp Horizon-class image with added texture (see Fig. 5(a)). In Fig. 6, we compressed
this image using both SFQ and WSFQ at a rate of 0.098 bits per pixel (bpp). For a point of reference, JPEG-
2000 compression yielded a PSNR of 30.89dB at this bit rate.†† Fig. 6(a) shows the SFQ-compressed image.
SFQ compression yielded a PSNR of 32.84dB, and the SFQ tree-pruning left a total of 1948 wavelet coefficients
described by scalar quantization. The tree-pruned wavelet-domain segmentation is shown in Fig. 6(b). As
expected, many of the significant coefficients occurred along the edge.

At the same bit rate, Fig. 6(c) shows the synthetic image compressed using WSFQ. A PSNR of 34.19dB was
attained, an improvement of 1.35dB over the standard SFQ technique and 3.30dB over JPEG-2000. Fig. 6(d)
shows the tree-pruned WSFQ segmentation. In regions described by wedgeprints, ringing artifacts were notice-
ably reduced compared to the SFQ result. In this case, 16 distinct wedgelet decompositions were encoded for

††Peak Signal-to-Noise Ratio (PSNR) is a commonly used measure of distortion; assuming a maximum possible intensity

of 255, PSNR = 10 log10
2552

MSE
.



(a) (b)

(c) (d)

Figure 6. (a) Synthetic image coded using SFQ. (b) Multiscale wavelet-domain segmentation from SFQ tree-pruning.
Zerotrees are represented in black; significant coefficients are gray. (c) Image coded using WSFQ. (d) WSFQ segmentation.
Wedgeprints are represented in white; note that the three subbands used slightly different wedgeprint configurations.

wedgeprints, leaving 1544 wavelet coefficients described by scalar quantization. The compression for wedgeprint
prediction errors encoded 244 residual coefficients using scalar quantization.

As expected, wedgeprints offered efficient representations for this synthetic image, which contained a strong,
sharp edge that was easily modeled with wedgelet decompositions. Several parameters in this example affected
the compression performance relative to SFQ. By adjusting the energy of the texture, for example, we could
achieve gains up to several dB above standard SFQ. These variations on the synthetic image reflect the potential
features encountered in natural images.

5.2. Natural images
As an example using a natural image, we compressed the 512× 512 Peppers image using both SFQ and WSFQ
at a bit rate of 0.07bpp. For a point of reference, JPEG-2000 compression yielded a PSNR of 28.57dB at this
bit rate. Fig. 7(a) shows a portion of the SFQ-compressed image (see Fig. 5(b) for the original version). SFQ
compression yielded a PSNR of 29.08dB, and the SFQ tree-pruning left a total of 5512 wavelet coefficients
described by scalar quantization.

At the same bit rate, Fig. 7(b) shows the Peppers test image compressed using WSFQ. A PSNR of 29.25dB
was attained, an improvement of 0.17dB over the standard SFQ technique and 0.68dB over JPEG-2000. In
regions described by wedgeprints, ringing artifacts were noticeably reduced compared to the SFQ result. In this
case, 44 separate wedgeprints were encoded, leaving 4436 wavelet coefficients described by scalar quantization.
The compression for wedgeprint prediction errors encoded 160 residual coefficients using scalar quantization.

Fig. 8(a) shows the SFQ and WSFQ performance as the target bit rate was increased. Both algorithms out-
performed JPEG-2000 at most rates. At higher rates, however, we see that WSFQ had diminishing performance



(a) (b)

Figure 7. Portion of Peppers test image coded using (a) SFQ and (b) WSFQ. A white box indicates a dyadic block
described by a wedgeprint in one or more subbands.

gains relative to SFQ. This behavior has several possible causes. At higher rates, for example, it is essential to
accurately encode textures very near to edges. In addition, wedgelet decompositions may not offer high enough
precision to code natural instances of geometry at high rates. Such factors can be incorporated into future
implementations of WSFQ.

Tests on other natural images performed similarly at a variety of bit rates; for images such as Cameraman

with isolated, sharp edges, WSFQ performed up to 0.30dB better than SFQ (see Fig. 8(b)). For images such as
Lenna that contain smoother edges with surrounding textures, WSFQ gains were more modest, around 0.05dB
relative to SFQ.

6. CONCLUSIONS

A compression approach involving explicit geometric descriptions appeals to the notion that such descriptions
are meaningful (by providing an understanding of objects in the scene), useful (by capturing significant high-
frequency energy), and easy to compress. In this paper, we have taken a careful approach in developing a
complete coder, using an R-D optimized framework to balance geometric descriptions against smooth and texture
representations. A key step in developing the WSFQ algorithm was a constructing a geometric model that
interfaces naturally with existing wavelet-domain models.

Despite our somewhat modest approach, restricting geometric descriptions to isolated contours within dyadic
blocks, the WSFQ coder outperforms the current state-of-the-art wavelet-based algorithms at most rates. This
demonstrates the true potential of geometric image compression. Several current topics of research may lead to
more significant breakthroughs in compression performance for natural images; the best solution may lie in some
combination of better geometric models, alternative compression frameworks, and new harmonic bases motivated
by geometry.

REFERENCES

1. J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian tree-structured image modeling using wavelet domain hidden
Markov models,” IEEE Trans. Image Processing 10, July 2001.

2. J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing 41,
pp. 3445–3462, Dec. 1993.

3. A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees,”
IEEE Trans. Circuits Syst. Video Technol. 6, pp. 243–250, June 1996.

4. S. LoPresto, K. Ramchandran, and M. T. Orchard, “Image coding based on mixture modeling of wavelet coefficients
and a fast estimation-quantization framework,” in Proceedings, IEEE Data Compression Conference — DCC ’97,
pp. 221–230, (Snowbird, Utah), March 1997.

5. Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-frequency quantization for wavelet image coding,” IEEE

Trans. Image Processing 6(5), pp. 677–693, 1997.
6. D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice,

Kluwer, Boston, 2002.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rate (bpp)

P
S

N
R

 G
ai

n 
(d

B
)

0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5

1

1.5

Rate (bpp)

P
S

N
R

 G
ai

n 
(d

B
)

(a) (b)

Figure 8. Performance improvement of WSFQ (solid) and SFQ (dashed) relative to JPEG-2000 compression for (a)
Peppers image and (b) Cameraman image.

7. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, second ed., 1999.
8. E. J. Candès and D. L. Donoho, “Curvelets — A suprisingly effective nonadaptive representation for objects with

edges,” in Curve and Surface Fitting, A. Cohen, C. Rabut, and L. L. Schumaker, eds., Vanderbilt University Press,
1999.

9. M. N. Do and M. Vetterli, “Contourlets: A directional multiresolution image representation,” in IEEE Int. Conf. on

Image Proc. — ICIP ’02, (Rochester, New York), Oct. 2002.
10. N. Kingsbury, “Image processing with complex wavelets,” Phil. Trans. R. Soc. Lond. A 357, pp. 2543–2560, Septem-

ber 1999.
11. I. W. Selesnick, “The design of approximate Hilbert transform pairs of wavelet bases,” IEEE Trans. Signal Processing

50, May 2002.
12. J. K. Romberg, M. B. Wakin, H. Choi, and R. G. Baraniuk, “A geometric hidden Markov tree wavelet model,” in

Proc. SPIE’s 48th Ann. Mtg., Int. Sym. on Optical Sci. and Tech., (San Diego), 2003.
13. F. C. A. Fernandes, R. L. C. van Spaendonck, and C. S. Burrus, “A new framework for complex wavelet transforms,”

IEEE Trans. Signal Processing 51, July 2003.
14. R. L. van Spaendonck, T. Blu, R. G. Baraniuk, and M. Vetterli, “Orthogonal Hilbert transform filter banks and

wavelets,” in Proc., IEEE Int. Conf. Acoust., Speech, Signal Proc. — ICASSP ’03, (Hong Kong), April 2003.
15. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multi-scale transforms,” IEEE Trans.

Inform. Theory 38, March 1992.
16. E. L. Pennec and S. Mallat, “Image compression with geometrical wavelets,” in IEEE Int. Conf. on Image Proc. —

ICIP ’01, (Thessaloniki, Greece), Oct. 2001.
17. J. Froment, “Image compression through level lines and wavelet packets,” in Wavelets in Signal and Image Analysis,

A. A. Petrosian and F. G. Meyer, eds., Kluwer, 2001.
18. F. G. Meyer, A. Z. Averbuch, and J. Strömberg, “Fast adaptive wavelet packet image compression,” IEEE Trans.

Image Processing 9, May 2000.
19. R. Shukla, P. L. Dragotti, M. Do, and M. Vetterli, “Rate distortion optimized tree structured compression algo-

rithms,” IEEE Trans. Image Processing , submitted 2003.
20. D. L. Donoho, “Wedgelets: Nearly-minimax estimation of edges,” Annals of Stat. 27, pp. 859–897, 1999.
21. J. K. Romberg, M. B. Wakin, and R. G. Baraniuk, “Multiscale wedgelet image analysis: Fast decompositions and

modeling,” in IEEE Int. Conf. on Image Proc. — ICIP ’02, (Rochester, New York), 2002.
22. P. L. Dragotti and M. Vetterli, “Wavelet footprints: Theory, algorithms and applications,” IEEE Trans. Signal

Processing 51, May 2003.
23. P. L. Dragotti and M. Vetterli, “Footprints and edgeprints for image denoising and compression,” in IEEE Int. Conf.

on Image Proc. — ICIP ’01, (Thessaloniki, Greece), Oct. 2001.
24. M. N. Do, P. L. Dragotti, R. Shukla, and M. Vetterli, “On the compression of two-dimensional piecewise smooth

functions,” in IEEE Int. Conf. on Image Proc. — ICIP ’01, (Thessaloniki, Greece), Oct. 2001.
25. J. K. Romberg, M. B. Wakin, and R. G. Baraniuk, “Approximation and compression of piecewise smooth images

using a wavelet/wedgelet geometric model,” in IEEE Int. Conf. on Image Proc. — ICIP ’03, (Barcelona), 2003.
26. I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Communications of the ACM

30, pp. 520–540, June 1987.
27. M. Tsai, J. Villasenor, and F. Chen, “Stack-run image coding,” IEEE Trans. Circuits Syst. Video Technol. 6, Oct.

1996.
28. M. D. Adams, The JasPer Project home page. www.ece.uvic.ca/∼mdadams/jasper/.


