LOCALIZATION OF FRAMES, BANACH FRAMES, AND THE
INVERTIBILITY OF THE FRAME OPERATOR

KARLHEINZ GROCHENIG

ABSTRACT. We introduce a new concept to describe the localization of frames.
In our main result we shown that the frame operator preserves this localization
and that the dual frame possesses the same localization property. As an appli-
cation we show that certain frames for Hilbert spaces extend automatically to
Banach frames. Using this abstract theory, we derive new results on the con-
struction of nonuniform Gabor frames and solve a problem about non-uniform
sampling in shift-invariant spaces.

1. INTRODUCTION

Frames are a tool for the construction of series expansions in Hilbert spaces.
Frames provide stable expansions, but they may be overcomplete and the coef-
ficients in the frame expansion therefore need not be unique, quite in contrast
to orthogonal expansions. This redundancy may also be used to advantage, for
example, in applications to noise reduction or for the reconstruction from lossy
data [18,22,40]. In addition, the construction of frames is easier and more flexible
than the construction of orthonormal bases.

Although the concept of frames is associated with Hilbert spaces, frames are often
used to analyze additional properties of functions besides their membership in that
Hilbert space. Their usefulness in applications stems from the fact that subtler
properties are often encoded in the frame coefficients. For example, wavelet frames
encode information on the smoothness and singularity properties of distributions;
Gabor frames (Weyl-Heisenberg frames) encode time-frequency information; and
frames consisting of reproducing kernels in certain Hilbert spaces encode pointwise
information and yield sampling theorems.

In all these applications, the goal is to recognize the finer properties of functions
by means of the magnitudes of the frame coefficients. These properties, typically
smoothness and decay properties or phase-space localization of functions, are mea-
sured by Banach space norms. In other words, the emphasis lies on the character-
ization of an associated family of Banach spaces of functions by the values of the
frame coefficients. These same Banach spaces also play a crucial role in non-linear
approximation and in compression algorithms [21].
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To illustrate this point, we consider a famous example from time-frequency anal-
ysis. Take a Gabor frame of the form {MgTog(t) = e>™Plig(t — ak) : k,1 € Z}
for some window function g € L?(R?). The frame coefficient (f, Mg T,rg) then is
a measure of the strength of the frequency band at 3l at time ak. In quantum
mechanics the quantity |(f, Mg Targ)|? is interpreted as the energy of a particle
in the state f near the point (ak, 5l) in phase space. For these interpretations to
make sense and to be useful, it is necessary that the window g itself possess good
time-frequency concentration.

To see this, we consider two extreme cases. If g = x1j¢, then {MpTorg : k,1 €
Z%} is a frame whenever « < 1 and § < 1 [19,33]. However, while the frame
coefficients (f, Mg ToxXx) reveal the localization properties of f in time (because x
has compact support), they do not provide any useful frequency information about
f because x is badly localized. See [33, p. 119] for a discussion. For instance, with
this frame it is not even possible to distinguish a Schwartz function from a rapidly
decaying step function solely from the magnitudes of the frame coefficients. There-
fore this particular frame, although perfectly satisfactory for L-theory, cannot and
should be not used for purposes of time-frequency analysis.

On the other hand, if the window is the Gaussian g(t) = e ™ then {MpTyxg -
k,l € Z%} is a frame for L%(R) if and only if a8 < 1 [45]. This frame is perfectly
suited for the time-frequency analysis of functions and distributions [33, Ch.13];
for example, it can be shown that a function f belongs to the Schwartz class S(R?)
if and only if the coefficients (f, M Targ) decay rapidly in k,l € Z% [33,36]. This
frame can be used for purposes of time-frequency analysis.

Current research on frames can be roughly divided into two directions: One ob-
jective is the construction and characterization of all frames with a given structure,
for example, all Gabor frames or all wavelet frames. See for instance [14,16, 37,
43.44]. Another objective is to achieve an understanding of those properties that
make a frame useful and the subsequent construction of such frames. In the liter-
ature these issues are usually treated separately under the topics “frame theory”
and “atomic decompositions”.

In this paper we make an attempt to reconcile these diverging aspects of frame
analysis. In our opinion it is important to carry frame theory beyond the analysis
of Hilbert spaces. In this respect, the combination of ideas from the abstract theory
of function spaces with the theory of frames proves to be very fertile and leads to a
deeper understanding of exactly which properties of functions can be detected and
extracted from the frame coefficients.

We will follow three basic principles.

Principle 1. Associated to each Hilbert space and each Riesz basis there is a
natural family of Banach spaces.

Principle II. Frames are only useful if they yield a description and character-
1zation of the associated Banach spaces. In theory, this is accomplished by the
concept of Banach frames [30]. We therefore try to understand those frames that
are also Banach frames for the associated Banach spaces.
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These principles are not new, they are implicit in the theory of atomic decompo-
sitions of many function spaces. The ¢-transform of Frazier and Jawerth is in fact a
construction of L?(R¢)-frames which at the same time yield characterizations of the
Besov-Triebel-Lizorkin spaces [28,29]. Likewise, the Gabor frames of Feichtinger
and Grochenig provide characterizations of modulation spaces and open the door
to the time-frequency analysis of distributions [23,25]. The sampling theory in [6]
amounts to the construction of Banach frames consisting of reproducing kernels for
a large class of shift-invariant spaces. The atomic decompositions of Coifman and
Rochberg [17] and of Janson, Peetre, and Rochberg [39] can be seen in the same
light. Some of these contributions actually predate the rediscovery of frames by
Daubechies, Grossmann, and Meyer [19] and have been interpreted in the context
of frames only a posteriori.

Principle I11. Useful frames possess a localization property. Sufficient localiza-
tion of a frame is a necessary condition for its extension to a Banach frame for the
associated Banach spaces.

Our main result can then be paraphrased as follows. Localized frames are uni-
versal Banach frames for the associated family of Banach spaces.

These principles are more a philosophic program than a mathematical theory.
To fill them with life, we work on two levels.

On an abstract level we define a concept for the localization of a frame with
respect to a Riesz basis (Section 3.3). Our main result states that the dual frame
possesses the same localization as the original one. This is the key property for
extending a frame for a Hilbert space to a Banach frame for the associated Banach
spaces. This insight allows us to reverse the usual order for the construction of
atomic decompositions and Banach frames. Instead of constructing a Banach frame
for all the associated Banach spaces from scratch as in the works mentioned above,
we start with the construction of an “ordinary” frame for a Hilbert space. This task
is much easier than the construction of a Banach frame and can be accomplished by
Hilbert space techniques. Furthermore, we can draw on the previously established
characterizations and constructions of Hilbert frames. In the next step we only
need to check whether the frame possesses the localization property. Under this
condition, this frame is automatically a Banach frame. We hope that, with this
procedure, results from pure frame theory will be useful for future applications.
We will follow this pattern in the examples in Sections 4 and 5.

The novelty of our approach lies in an appropriate definition of localized frames
and the degree of abstraction. The key tool in the mathematical argument is a
theorem of Jaffard on the off-diagonal decay of inverse matrices. This theorem is a
simple form of a symbolic calculus in certain Banach algebras of infinite matrices.
It is a good substitute for Wiener’s lemma in situations without sufficient group
structure, and has already been successfully used in the construction of wavelet
bases [38].
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The degree of abstraction is not a purpose in itself. We will apply the abstract
theory of localized frames to concrete examples and obtain new results on Gabor
frames and new sampling theorems in shift-invariant spaces.

As our first application we study sampling theorems in shift-invariant spaces and
solve a conjecture of Aldroubi and the author mentioned in [6]. We show that an
L?-sampling theorem in a shift-invariant space implies automatically a sampling
theorem for weighted LP-spaces. Moreover, the reconstruction from samples in a
weighted ¢P-space is performed exactly in the same way as for £2-samples, namely
by the frame reconstruction in terms of the the dual frame. Thus the frame tech-
niques used in sampling theory, when applied correctly, possess an extremely strong
additional stability property. This type of stability seems to be very desirable in
numerical applications. Finally, we derive a similar statement for sampling from
averages in shift-invariant spaces.

As a second application we study Gabor frames, in particular non-uniform Gabor
frames. We show that the established characterizations of time-frequency concen-
tration by means of modulation space norms carry over to non-uniform Gabor
frames. For uniform Gabor frames, such results have already been obtained by
means of fairly deep methods from the theory of Banach algebras [33,35]. So far, a
similar time-frequency analysis with non-uniform Gabor frames was considered out
of reach, because such frames cannot be analyzed with group theoretic arguments.
The main difficulty arises from the fact that the dual frame is no longer determined
by a single dual window. The axiomatic theory of localized frames offers a guideline
for how to prove such a result in the absence of a group structure: namely, once a
non-uniform Gabor frame is given for L?(R¢), we only need to check its localization
properties. For Gabor frames, the abstract concept of localization coincides with
an intuitive notion of localization of the short-time Fourier transform. The abstract
theory even yields an extension beyond Gabor frames to frames of time-frequency
molecules.

In both examples, we find that the required sampling density is independent of
the Banach space. The sampling density for stable sampling in a shift-invariant
space is completely determined by the L2-theory, likewise the density of a non-
uniform Gabor frame does not depend on the modulation space, but only on L?(R?).
This insight is quite surprising, because some previous theories that were based only
on the first two principles required a higher density for weighted spaces [3,17,24,30].

The paper is organized as follows. In Section 2 we collect the main properties
of polynomial and sub-exponential weight functions. In Section 3 we present an
axiomatic theory of the localization of frames. We define a family of Banach spaces
associated to each Hilbert space and Riesz basis (Section 3.1) and investigate the
behavior of the frame operator on these spaces (Section 3.2). In Section 3.3 we
introduce the localization of a frame. The main theorem on the localization of
the dual frame is presented in Section 3.4. In Section 4 we apply the abstract
theory to sampling theorems in shift-invariant spaces, thereby solving a conjecture
of Aldroubi and Grochenig. In Section 5 we study non-uniform Gabor frames
and show that the result about time-frequency characterization of functions and
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distributions by means of Gabor frames can be adapted to cover the case of non-
uniform Gabor frames.

Further applications (to wavelet frames, multiple windows and generators, sam-
pling theorems in other function spaces) will be investigated in future works.

We assume that the reader is familiar with the basic elements of frame theory
and Riesz bases [14,18,22]. The background on sampling in shift-invariant spaces
and an extensive list of references can be found in [6], for time-frequency analysis
we refer to [33]. For reasons of length, we will not make any attempt to be self-
contained or to motivate these examples.

Acknowledgement: 1 would like to thank H. G. Feichtinger, G. Zimmermann,
and foremost Chris Heil for providing useful feedback on the manuscript.

2. WEIGHT FUNCTIONS

We first summarize some elementary properties of weight functions of polynomial
and sub-exponential growth.

Index Sets. In the following N and X are countable index sets in some R? and
we may assume that both X and N are separated, this means that
inf |z—y|>d>0
z,YEX TAY
and likewise for V.
When X is used to index a family of functions on R?, the index z in f,(¢)
indicates that the essential support of f, is centered at x.

Polynomial and Sub-Exponential Weight Functions. A weight is a non-
negative function on R? which we may assume without loss of generality to be
continuous. A weight m is called s-moderate, if there are constants C,s > 0 such
that

(1) m(t+xz) < C(1+ [t])°’m(x) for all t,z € R®.
The weight function occurring in (1),
(2) vs(t) = (1 + |t])° for t € R?,

is submultiplicative, i.e., v, satisfies vy(t + ) < v4(t)vs(z).
A weight function m is called sub-exponential if there are constants C,vy > 0
and 0 < 8 < 1 such that

(3) m(t +z) < Ce™ m(z) for all ¢,z € R*.

By setting = 0 in (1) and in (3) we see that a an s-moderate weight m grows at
most polynomially, i.e., m(t) < C(1+ |t]|)®, and a sub-exponential weight grows at
most like Ce®lt”.

The weighted (P-space (2, (X) on the index set X is defined by the norm

(@) lellg, = (X lesPmiy) ™.

TEX
with the usual modification for p = oo.
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In dealing with s-moderate and sub-exponential weights, we will repeatedly use
the following lemmas.

Lemma 2.1. If X CR? is separated, then for any s > d
(5) supZ(1+|x—v|)7s=CS<oo.

d
vER? ey

Proof. Fixv € R%. Since |z —y| > 6 for z # y € X, each box of side length o = Q‘SW
contains at most one point x — v. Therefore we may write x — v = an, + u, for
unique n, € Z% and p, € [—a,a)?, and by the choice of o we have n, # n, for

r#yeX. Since (1+ |z +y|)™* < (1+|2)*(1+ |y|)~* for z,y € R? and s > 0, we

find that
Z (I+|z—v|)"" = Z (14 |ang + pe|) ™
TEX TEX
< 2 (1 lmel)” (14 Jana])
reX
< Ci(1+ Z lang| )
TEX gy #0
< Ci(l+a”® Z In|™*) < cc.
nezd\{0}
Clearly this estimate is independent of v, hence the assertion. [ |

Lemma 2.2. Assume that X C R? is separated.
(a) If s > d, then

© > (1 tlz—n) 1+ |z — m|)*s) <CA+n—-m)™° mneN.
TeEX
(b) There exists o' € (0, ) such that
(7) Ze—odz—n\ 6—a|z—m| < Oe—a’|m—n| )
TEX

Proof. (a) We partition X into A; := {z € X : |[x —n| < |n—m|/2} and Ay =
X\ A;. If x € Ay, then |z — m| > |n —m|/2 and thus

3 (1 tlz—n) 1+ |z — m|)_3) < (1 +ln— m|/2>75 3 (1 +lz— n|)_3) .

€A x€A1
If x € Ay, then |z —n| > |n — m|/2 and again we obtain

—S$
S (1l -nh)t+le—m) ) < (14 n—ml/2) > (14| —m) ).
r€A2 z€A2
Here the sums over A; and A, are finite by Lemma 2.1 and (1 + |n — m|/2)7* <
2°(1 + |n — m|)~*. Thus the assertion follows.
(b) By repeating these arguments for the exponential weight e~*® we obtain
(7) with o/ = a/2. (We do not need a sharper estimate for o'.) u
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The next lemma is a substitute for Young’s convolution relation in the absence
of a group structure. If N' = X = Z?, then the following statement follows from
Young’s Theorem.

Lemma 2.3. (a) Let Ay, = (14 |z —n|)=7%"¢ for some e >0 andn e N,z € X.
Then the operator A defined on finite sequences (¢y)nen by matriz multiplication
(Ac)y = >, Azncn extends to a bounded operator from (2 (N) to (& (X) for all
p € [1,00] and all s-moderate weights m.

(b) If we define Ay, = e~ =" then A maps (2 (N) to 2, (X) for all p € [1, ]
and all sub-exponential weights m.

Proof. (a) Similar to the proof of Schur’s test, we show first that A is bounded
from (1 (N) to £..(X) and from (2(N) to £°(X). The lemma then follows by
interpolation (see [11] for the interpolation of weighted LP-spaces).

Boundedness on (*.

IAclla, vy = DD Awca|m(@)

z€EX neN
< D) (e —n) e m(x)
TEX neEN
(8) < sup @; (1+ |z = n)™*) (%g{%m + |o = nf) " m(n) m(z))
x (X lealm(m)
neN
= Cllclles, oy -

The first supremum occurring in (8) is finite by Lemma 2.1, the second supremum
is finite because of m(z —n+n) < C'(1+ |z — n|)*m(n) for all z,n € RY.

Boundedness on £°°.

[Acligxy = sup| D Ao m(@)

TEX N
< sup (14— nl) ey ()
wEXnEN
< (sup Z(l + |z — n|)’d"> ( sup (1+|z— n\)’sm(:c)m(n)’l)
zeX TN zEX nEN
X ( sup |cp| m(n))
neN

IN

Clelleso vy -
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(b) For sub-exponential weights we need a slight modification.

lAcla,y < DD e eu m(a)

ZEX neN
< sup(Z e’O"‘”’"W)( sup e’a‘x’"wm(n)’lm(x))
neN seX zeX ,neN
x (3 lealm(n))
neN
= Cllella,w,

since m(z — n +n) < C e m(n) < C'e®*"/2m(n). The case p = oo is done
similarly. [

3. A CONCEPT FOR THE LOCALIZATION OF FRAMES

In this section we introduce an axiomatic theory of localized frames. After some
set-up we define the localization of a frame with respect to a given Riesz basis and
then investigate the properties of the dual frame.

3.1. Associated Banach Spaces. We first define an abstract class of Banach
spaces associated to every orthonormal basis or Riesz basis of a Hilbert space. In
concrete situations, these spaces turn out to be well-known function spaces from
analysis, such as shift-invariant spaces (Section 5), Besov spaces, or modulation
spaces (Section 4).

Let {g, : n € N'} be a Riesz basis of H with dual basis {g, : n € N'}. Let m be
a weight function on R? of polynomial or sub-exponential type.

Definition 1. Assume that ¢2,(A) C ¢2(N). Then the Banach space HZ, is defined
to be

(9) Hﬁl={f€7-[:f:chgnforceﬂfn(/\/)}
neN

with norm [|f 1y, = [l

Note that ¢, is uniquely determined, in fact, ¢, = (f, gn)-

Since 2, (N) C ?(N), then HP is a (dense) subspace of H. If /£ ¢ ¢* and
p < oo, we define H? to be the completion of the subspace Hg of finite linear
combinations, i.e., Ho = {f = D> ,crCngn : suppc finite}, with respect to the
norm || f|lxz, = |lcller,. If p=oco and €52 € (2, we take the weak-* completion of H,
to define H;°. Of course, in these cases H?, is no longer contained in H.

In concrete situations with more structure, the series f = > .\ cngn always
converges in some super-space of distributions D’ O H, even when (¢, ),en is taken
from a “large” sequence space. Then (9) make sense as a subspace of D’ instead
of H. See Sections 4 and 5 for examples of associated Banach spaces HP, that are
not contained in H.
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3.2. Frames and Frame Operators. Let £ = {e, : © € X'} be a frame for H
and Sf =) .+ (f, ez)es be the corresponding frame operator.

Each frame element has a natural expansion with respect to the given Riesz basis
as follows:

(10) €r = Z(ewag;l>gn = Z(emagn>§;®-
neN neN

Since {e, : x € X'} is a frame, the frame operator S is invertible on H by definition.
Our main objective is to understand the mapping properties of S on the associated
Banach spaces ‘HE . For this purpose we study the frame operator with respect to
the basis {g, : n € N'}.

We expand f =) f.gn and e, with respect to the Riesz basis and obtain that

Sf = Z(fa e:c>e:c

rzeX

= D ) falgn eaden

reEX nEN

= Z Z Z fn<gn’e$><e$’§\’r;>gm

zEX mEN neEN

= ¥ (E(E o eendid) ) on

Now let T" be the infinite matrix with entries
(11) T = Z(gna ew><e$ag~m> = <Sg’n7 g~m> )
zeX
and let I' be the mapping
(12) LiHe CWN),  (Cf)n=(f.a)-
Since {g,} is a Riesz basis, I' is invertible, and so the calculation above can be

recast concisely as S = I'"! T'T", or by means of a commutative diagram as

VI V)

(13) r ir

CIN) S AW,

This observation carries over to the Banach spaces H? , because I' is an isometric
isomorphism between H2, and (2, (N'). To understand the behavior of S on H2,, it
therefore suffices to study the matrix 7" on the sequence space ¢, (N'). This task is
conceptually much simpler.

For the investigation of T on (2 (N') we will use a fundamental theorem of Jaffard
[38]. We cite a version where the index set is a separated subset N of RY.

Theorem 3.1 (Jaffard’s Theorem). Assume that the matriv G = (Gg)kien Satis-
fies the following properties:
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(a) G is invertible as an operator on (*(N), and
(0) |Gl < C A+ |k—1))"", k,l €N for some constant C > 0 and some r > d.
Then the inverse matriz H = G~ satisfies the same off-diagonal decay, that is,

(14) |Hy| <C"(1+[k=1I)7", kIeN.

The proof of Theorem 3.1 is rather delicate (see [38] for the detailed argument).
Similar statements for different conditions on the off-diagonal decay can be found
in [9].

For exponential decay off the diagonal, we use the following theorem, see [38,42].

Theorem 3.2. Assume that the matriz G = (G)gen satisfies the following prop-
erties:

(a) G 1is invertible as an operator on (*(N'), and

(b) |Gr| < Ce k=l k1€ N for some constants a, C > 0.

Then there erists o' € (0,a) such that the inverse matrizr H = G~ satisfies the
off-diagonal decay of the form

(15) |Hy| < Cle@*=U kleN.

3.3. Localization of Frames. After these preparations we now can introduce the
main concept of this paper, a new notion of localization for frames.

Definition 2. We say that the frame £ = {e, : x € X'} is polynomially localized
with respect to the Riesz basis {g,} with decay s > 0 (or simply s-localized), if

(16) [(€z; )| S C(L+ |z —n[)™°
and
(17) ez gn)| S C(L+ |z —n[)™*

foralln € NV and z € X.
Likewise & is called ezponentially localized, if for some o > 0

[{€x, gn)| < Ce~%z-nl  and [{€xy Gn)| < Cle—z—nl

REMARKS: 1. Clearly, the localization of a frame depends on the given Riesz
basis. One may define an equivalence relation for Riesz bases and then show that
the localization properties depend only on the equivalence class of the Riesz basis.
For simplicity, we indicate this for orthonormal bases only. We call two orthonormal
bases {g, : n € N'} and {h,, : m € N’} s-equivalent, if

Hgn, hn)| S C(1+|n—m|)™* VYneN meN'.

Using Lemma 2.2, it is easy to see that a frame & is s-localized with respect to the
orthonormal basis {g,} if and only if it is s-localized with respect to {h,}.

2. Conditions (16) and (17) coincide for orthonormal bases, but they are indepen-
dent for general Riesz bases. Only for certain Riesz bases these conditions are equiv-
alent. It can be shown that (17) is implied by (16) and viceversa whenever the Gram
matrix of the Riesz basis satisfies the conditions |{gy,, g )| < C(1+|m—nl|)~*,m,n €
N. As the explicit computation and estimation of Riesz bases can be very cumber-
some, one will mostly use the localization of frames with respect to an orthonormal



LOCALIZATION OF FRAMES 11

basis. In Section 4, however, we will work with the full definition and use Riesz
bases.

We first show that the frame operator of localized frames is well behaved on the
Banach spaces HZ,.

Proposition 3.3. Given 1 < p < oo, s> 0, and an s-moderate weight m.

Assume that € is an (s + d + €)-localized frame for some € > 0.

(a) Then the coefficient operator defined by Cef = ((f, ew))m
HP to (P (X).

(b) The synthesis operator defined on finite sequences by Dgc = ) . Cy€y €1-
tends to a bounded mapping from (£ (X) to HE,.

(c) The frame operator S = Sg = DeCs = ), o(f, €x)ex maps HY, into HPE,,
and the series converges uncondionally for 1 < p < oco.

If £ is an exponentially localized frame , then these statements hold for all sub-
exponential weights.

cx 18 bounded from

Proof. We prove these statements for (s+d+ ¢)-localized frames. For exponentially
localized frames we use Lemma 2.3(b) instead of (a).
(a) Let f =3, cr fn9n, then the localization estimates (16) imply that

[(frea)l = | D falgns€a)|

neN
—s—d—e
< C ) Il +]z—n)
neN
If feHb, then || f]lyz, = ||(fa)nenlle, (), and Lemma 2.3(a) implies that

1Ce flle,xy < Cll(fa)nenlle, vy = Cllflle, -

(b) We need to show that the sequence with entries (Dgc)y = (D, cx C2€as Gn) 18
in ¢ (N). Using (17) and the notation of Lemma 2.3(a), we obtain that

[(Dec)n| < Z |ca| [{€x: Gn)|
TEX
< CY eal (L4 |z —n)) 7 = C (A%c|)n
TEX
Now Lemma 2.3(a) (with A and X interchanged) imply the boundedness of Dg:

[1Decllrg, = [[A[elller, ) < 1A lop llelle, ) -

(c) The boundedness of S = D¢C¢ follows by combining (a) and (b). As for the
unconditional convergence of the series defining S, let € > 0 and choose Ny = N (e),
such that ||(f, ex)zgns |, < €. Then for any finite set N; D N, assertions (a) and
(b) imply that

I1SF =Y (frexdeallan, < NICellop I(f: €x)agniller, < ICellope-
TENT

This means that ) _.(f,e)e, converges unconditionally in H?,. [
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REMARK: Note that the proof shows that the operator norms of C¢, Dg and Sg
can bounded uniformly by a constant that depends only on s, but not on m or p.

Next we investigate how the localization of a frame affects the system matrix
defined in (11).

Proposition 3.4. (a) Assume that £ = {e, : © € X'} is polynomially localized with
respect to the Riesz basis {g,} with decay s > d. Then

(18) T <C(1+|m—n|)"* formmneN.
(b) If € is exponentially localized, then for some o/ > 0
(19) Tyn| < Cem@'m=nl, form,n e N .
Proof. (a) We insert the inequalities (16) and (17) into (11) and obtain
(20) T <CI (4 2 =) (1 + [z =m]) ™).
TeEX

Now apply Lemma 2.2(a).
(b) is proved similarly by using Lemma 2.2(b) [ |

3.4. Localization of the Dual Frame. With these concepts we are now ready
to prove the main theorem about the localization of frames and their dual frames.
Recall that d is the dimension of the “carrier” space R? and that all index sets N/
and X are subsets of R?. For polynomial decay the conditions depend on d.

Theorem 3.5. Assume that {e, : © € X'} is a frame with polynomial decay s+d+e
with respect to the Riesz basis {g,} for some e > 0.

(a) Then the frame operator S is invertible simultaneously on all Banach spaces
HE . where 1 < p < 0o and m is an s-moderate weight.

(b) The dual frame {€, = S™'e, : x € X'} is polynomially localized with the same
decay s+ d + e.

(c) The frame expansion

(21) F=Y (fe)ea =) (f.é)es

converges unconditionally in HE, for 1 < p < oo (and weak* unconditionally in

(d) We have the norm equivalence
(22)  flhe, < (Z| frea)pmap) "’ (Z\ r.é)pmizy) "

We can rephrase part (b) of the theorem by saying that the dual frame possesses
the same localization properties as the original frame.

Proof. (a) Consider the matrix 7" defined in (11). By Proposition 3.4 the entries of
T have the following off-diagonal decay:

(23) Trn = O((1 + |m — n|)~5797¢).
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Since S acting on H and T acting on ¢*(\') are conjugate by (13), they have the
same spectrum. By assumption S is invertible, therefore 7" is also invertible. These
are the hypotheses of Theorem 3.1 (with r = s + d 4+ € > d), and so we conclude
that the entries of the inverse matrix also satisfy

(24) (Tﬁl)mn < C(l + |m — n|)*s’d’€

By Lemma 2.3(a) (with N’ = X), T~! extends to a bounded operator on all se-
quence spaces (2, (N') simultaneously for all s-moderate weight functions m and all
p € [1,00]. By the diagram (13) S is then invertible on H?,.

(b) We have to check conditions (16) and (17) for the dual frame {é,}. By (13)
and (24) we find that

—s—d—e¢

(T )mn| = (S g Gm)| < C(1+ |m —nl)
Using the biorthogonal expansion (10) of e,, we obtain

(€2 gny = (S7'ew gn) = (€2, 5" gn)
(25) = Z<ewagm> <§;,S_1gn)

meN

= Z (ezs Gm) (T 1) mn -

meN
Estimate (16) for e, follows by means of Lemma 2.2(a)
~ —s—d—e¢ Cde
(€2, gn)| < 012 (1+|a:—m|) (1+\m—n\) d
meN
< Cy(l+ |z — n|)_5_d_6.

The second estimate (17) follows similarly from
(€2:Gn) = (ex,57'Gn)

= > (w5 (9 ST ) = D (ew G (T

meN meN

(c) Since the series ) .. (f, €x)e, converges unconditionally by Prop. 3.3(c), the
series ST1(Y0, < ¢ (f, ex)es) also converges unconditionally, see also [33, Lemma 5.3.2].

(d) Since f =S71Sf = S Y(DeCef), we have
£z, < 1S ol DellopICe fllez, ) < NS llop | Dellop | Ce llop 1 114z, -
The second norm equivalence is shown in the same way by using the fact that

ST =3 ex(f, €x)és (eg., [33, Lemma 5.1.6]). |

We now formulate a version of the main theorem for exponentially localized
frames. In this case the class of admissible weights can be extended to arbitary
sub-exponential weights.
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Theorem 3.6. Assume that &€ = {e, : x € X'} is an exponentially localized frame
with respect to the Riesz basis {gn}-

(a) Then the frame operator S is invertible simultaneously on all Banach spaces
HE for all sub-exponential weight functions m.

(b) The dual frame {e, : x € X'} is also exponentially localized.

Furthermore, the frame expansion (21) converges unconditionally in HE, for 1 <
p < 0o and all sub-exponential weights m, and the norm equivalence (22) holds.

Proof. The proof is similar to the proof of Theorem 3.5. We apply Proposi-
tion 3.4(b) and see that Theorem 3.2 implies the existence of o/ < « such that
(T n| < Ce=®'Im=7! for m,n € N. Consequently, T~ is bounded on all /2, (\)
with a sub-exponential weight m by Lemma 2.3(b). The rest follows as above. B

3.5. Banach Frames. Banach frames generalize the concept of frames for Hilbert
spaces to Banach spaces [30]. We investigate the statements of Theorems 3.5
and 3.6 in the light of Banach frames.

Definition 3. A Banach frame of a separable Banach space B is a countable set
E ={e;, : x € X} C B with an associated sequence space By such that the
following properties hold.

(a) The coefficient operator C¢ defined by Cef = (( frex)ee x) is bounded from
B into By.
(b) Norm equivalence:

(26) 1f1l8 < [[{f, €a)zex| 5, -

(c) There exists a bounded operator R from B, onto B, a so-called reconstruction
operator, such that

(27) R({f,edacr) = f
In other words, RC¢ = I, and the following diagram commutes:
By
C /! IR
B — B

We can now reformulate Theorems 3.5 and 3.6 as follows.

Theorem 3.7. Assume that &€ = {e, : x € X'} is a localized frame for the Hilbert
space H. Then & s automatically a Banach frame for H?,,1 < p < oo.

Specifically, if £ 1s polynomially localized with decay s + d + €,¢ > 0, then it
is a Banach frame for all ‘HE, for all s-moderate weight functions m. If € 1is
exponentially localized, then it is a Banach frame for all H?, for all sub-exponential
weight functions m.

Moreover, the reconstruction operator R coincides with the inverse frame opera-
tor, that is, we can take R = S™1.
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Proof. This is just a reformulation of Theorems 3.5 and 3.6 in a different terminol-
0gy. [ |

To summarize, localized frames are automatically Banach frames. They are
universal in the sense that they form a Banach frame simultaneously for the entire
family of associated Banach spaces ‘H?,.

REMARKS: 1. See [30] for the original definition of Banach frames and [7,13,15,27]
for subsequent work. The atomic decompositions mentioned in the introduction
can be interpreted as constructions of Banach frames [17,29].

2. Some authors use a weaker concept instead of Definition 3. A set £ is called
a p-frame, if only conditions (a) and (b) hold with By = ¢ [7].

For localized frames, the two concepts of p-frames and Banach frames coincide by
Theorem 3.7. In addition, Theorem 3.7 provides an explicit reconstruction operator
R, namely the inverse frame operator.

4. NON-UNIFORM SAMPLING IN SHIFT-INVARIANT SPACES

As our first application we discuss the (non-uniform) sampling problem in shift-
invariant spaces of R¢. For a detailed exposition and a comprehensive list of refer-
ences we refer to [6].

4.1. Shift-Invariant Spaces. Let T, f(t) = f(t —z),t,x € R%, be the translation
operator. Choose a so-called generator ¢ € L?(R?) and define the shift-invariant
space space V2 (¢) as a subspace of LP by

(28) Va(o) ={f € LL,(RY) : f = Y axTyp with ¢ € £5,(2%)}

kez4d

For this definition to make sense, we impose the following standard assumptions
on the generator ¢:

(i) The translates {Ty : k € Z%} form a Riesz basis for the Hilbert space V?(i).
We also say that “p is a stable generator”.

(ii) ¢ is continuous.

(iii) To deal with s-moderate weights, we assume that ¢ satisfies the decay
condition

(29) lp(x)] < C(1+ |z)~4*¢  for some € > 0.

(iii") To deal with sub-exponential weight functions, we assume that ¢ decays
exponentially as

(30) [p(x)] < Ceelel,

Under the assumptions (i) — (iii) or (iii’) the sum in (28) converges uncondition-
ally in V() and uniformly [6], and VP (¢) is a closed subspace of L2 (R?) endowed
with the equivalent norms

(31) 1£l1s, < el
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Comparing (28) with (9), we see that the shift-invariant space V2 () coincides with
the Banach space H?, associated to the Riesz basis {T}¢}.

4.2. The Dual Generator. Since the Riesz basis {T,¢ : k € Z?} is invariant
under translations, the dual basis must again be of the form {7} : k € Z?}. The
dual generator ¢ satisfies the relations

(32) (Tx@, Tip) = Omi
and every f € V?2(yp) possesses the biorthogonal expansion
(33) = Z(f, T )T -

kezd

To apply Theorems 3.5 and 3.6, we need an estimate for the decay of ¢.
Lemma 4.1. (a) If ¢ is stable and satisfies |o(x)| < C(1+ |x|)™" for some r > d,

then the dual generator satisfies
B(2)| < C'(1+[a])™".
(b) If @ is stable and decays ewponentially, i.e., |p(z)| < Ce=®! then |p(z)| <
C'e='*| for some o/,0 < o < a.

Proof. (a) Since ¢ € V?(yp), it possesses the series expansion

(34) p=> bTwp.

The coefficients b, are determined by the biorthogonality condition (32):
5l = <¢a ,-Tl§0>
= 2{: bm<]1n¢723¢>

mezd
= > bnle, Tieme)

meze
This convolution can be written with the (infinite) matrix ® with entries @, =
(0, T)-m®) = Vi—m- The assumption on the decay of ¢ and Lemma 2.2(a) imply
that

Byl <CA+|I=m|)™ I,m ez,

Since {Typ : k € Z%} is a Riesz basis for V2(y), its Gram matrix ® is invertible

on (2(Z%), and ® ! is again a convolution with a sequence, say (. Since r > d,
Theorem 3.1 yields the decay estimate

(@ im| = Bi—m| < C"(A+ |l —m|)™"
Consequently
b=d"'6=Bx5=4.
Thus
bl <CQ+)T ez,
and invoking Lemma 2.2(a) once again we obtain that |@(x)| < C(1+ |z|)~".



LOCALIZATION OF FRAMES

(b) The proof is similar. Just use Theorem 3.2 and Lemma 2.2(b). u

REMARK: The above proof emphasizes the role of Theorems 3.1 and 3.2. Alterna-
tive proofs can be based on the group structure of the index set Z¢ and use Fourier
series, Wiener’s Lemma, and analyticity. See [6,18] for arguments in this direction.

4.3. Sampling Theorems. As a consequence of assumptions (i) — (iii) and (iii’),
every pointwise evaluation f — f(x) is a continuous linear functional on H?,. For
p =2 and m = 1 this implies that there exist kernel functions K, € V2(¢p) such
that

(35) fl@) =(f, Ks).
In the usual Hilbert space setting, a sampling theorem of the form
(36) D 1F@F =< I£ll2
reX

is therefore equivalent to saying that the set {K, : x € X'} is a frame for V?(yp)
[1,10]. If (36) is satisfied for X C R¢, X is called a set of sampling for V().

Our aim is to extend (36) to a sampling theorem in V2 () and to derive sampling
inequalities of the form

67) Al < (S U @Pm@?) " < Bilflls,  for £ e VA

TEX

In other words, we want to construct a Banach frame of the form {K, : z € X'} for
VP2(p). To apply the abstract theory of Section 3, we need to check conditions (16)
and (17) for a frame of the form {K, : x € X'}.

Using the decay properties of the generators ¢ and ¢ (Lemma 4.1 with r =
s+d+e€), and (35), we estimate

(Ko, Tep)| = lp(x — k)| < C(1+ |z — &[) 77
and
(Ko, Tep)| = |o(x = k)| < C(L+ |z — &[) 777
Consequently {K, : z € X'} is (s + d + €)-localized. We have now verified all

hypotheses of Theorem 3.5, and thus we can deduce the following sampling theorem
in shift-invariant spaces.

Theorem 4.2. Assume that the generator ¢ satisfies the assumptions (i) — (i),
that m is s-moderate, and that X is a set of sampling for V*(¢) with dual frame
K,.

(a) Then we have for every f € VE(¢),1 <p < oo, that

1/p
(38) Allflleg, < (X1 @Fm)) " < Blfls,

zeX
(b) Each K, satisfies the localization estimate
(39) K, ()| <C+]t—=z))*%¢  forallze X teR?,
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with a constant C' independent of x.
(¢) The reconstruction series

(40) F=> @)K,
reX
converges unconditionally in VE(¢) for 1 < p < oo.

Proof. Assertions (a) and (c) follow from Theorem 3.5. To prove (b), we write K,
as follows:

I?ac(t) = <IA€$, Kt> = Z <IA€$’ Tk§0> <Tk§b’ Kt) .

kezd
Now use the localization estimate |[(K,, Tpp)| < C(1 + |& — k|)™*%¢, which is
guaranteed by Theorem 3.5(b), the localization of K, and Lemma 2.2(a). [ |

The frame reconstruction (40) is not only valid in V?(¢), but also holds in all
VE(p). If VE(p) C V2(p), then (40) converges in a finer norm. This property can
be seen as a very strong and useful form of stability of the frame {K, : x € X'}.

Note that K, has its essential support in a neighborhood of x, therefore the
reconstruction (40) is local in the sense that for the approximation of f(zy) we
need only samples f(z) for z € X near x.

A similar theorem can be proved for exponentially decaying generators.

Theorem 4.3. Assume that ¢ satisfies conditions (i) — (i1i’) and that X is a set
of sampling for V*(p) with dual frame K,. Then (38) and (40) hold for the shift-
invariant spaces VP () with sub-exponential weight m. There exists o/ € (0, ),
such that

(41) K,(t) < C'e=l=2 forallz e X.
REMARKS: 1. It is worth emphasizing that an L?-estimate of the form | f|]z <
(D per |f(3:)|2)1/2 for f € V2(p) implies automatically a weighted LP-estimate of

/p
the form [/llvap) < (Soex F@Pmi@y) " for f € VA().

2. In contrast to sampling theorems in [3,6], the sampling density in all V2(¢p) is
determined entirely by the required density in the Hilbert space V%(¢) (and suitable
decay of ¢). The Hilbert space theory is well-understood and for a large class of
generators and sampling sets X', sharp sampling theorems of the form (36) have
already been derived and are being used [5,6]. The reconstruction in the associated
Banach spaces and the stability of this reconstruction then follow automatically.
Theorem 4.2 solves a conjecture posed in [6].

3. Theorem 4.2 fails for band-limited functions. In this case the generator is
p(t) = 2 and V2(p) = {f € L*(R) : supp f C [~1/2,1/2]}. We note that ¢
fails to satisfy the decay condition (29). While the conclusion of Theorem 4.2(a) is
still valid for V2 (¢) = V2(p) N LP, for 1 < p < 2 and suitable weights, statements
(b) and (c) are false: the dual frame lacks localization and the reconstruction (40)
fails to converge in V.. This counter-example shows that Theorem 3.5 is almost
sharp.
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4.4. Sampling from Averages. A number of recent papers emphasize that a
realistic sampling model should use local averages (f,¥;) = [pa f( t)dt in
place of exact pointwise values f(x;) as the input for reconstruction [2 4 31] To
interpret (f,1;) as a local average (where the averaging procedure v¢; may vary
from point to point), we assume that

(42) sup ||l < oo,
Jj€J
(43) b = 1,
R4
(44) suppyy; C x;+[—a,a]’.

As an application of the abstract theory of localized frames we prove the following
theorem for sampling from averages. Again, it suffices to understand the L?-theory
in order to do sampling in shift-invariant spaces.

Theorem 4.4. Assume that the generator ¢ satisfies conditions (i) — (iii) or (11i’)
and that the averaging functions v; satisfy (42)—(44).

If
(45) AIFIE <D KAl < Bl
jes
holds for all f € V*(y), then the norm equivalence
1/p
(46) Alfll < (10w Pmiay) < B UK
jeJ
holds for all f € VP (), where m can be an arbitrary s-moderate weights m if (29)
holds, and a sub-exponential weight if (30) holds.

Proof. Let U; € V2(y) be the orthogonal projection of ; onto V*(¢). Then

(fiy) = (£, 95)

and by (45) the set {U; : j € J} is a frame for V?(p). We need to verify that this
frame is localized. Inequality (16) turns into the estimate

(T = [ Tupdl = | [ witole =0
< [ I i k)

i+[—a,a]d
< / Wj(t)‘ dt sup (1+|t— ]{|)*S*d76
AL t€xj+[—a,al?
< C(+|xj;— k)74,
The estimate for (¥, T;¢) is similar using Lemma 4.1.

Thus we have shown that {¥;} is a localized frame for V*(¢) and an application
of Theorem 3.5 yields the conclusion. [ |
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5. UNIFORM AND NON-UNIFORM GABOR FRAMES

Next we apply the theory of localized frames to time-frequency analysis. Write

(47) T.f(t)=f(t—z) and M,f(t) = ™" f(t)
for the translation and modulation operators. The combination
(48) 7(z) = M,T, for z = (z,w) € R*

is called a time-frequency shift.

5.1. Wilson Bases and Modulation Spaces. By the Balian-Low theorem, reg-
ular sets of time-frequency shifts of a well-localized smooth function can never form
a Riesz basis (see [33, Thm. 8.4.1] and the given references), but a remarkable trick
of Daubechies, Jaffard, and Journée [20] allows us to construct orthonormal bases
for L?(R) with a transparent time-frequency structure. These so-called Wilson
bases are the natural bases in order to test Gabor frames for localization.

Given ¢ € L*(R), we define a Wilson system to be the following collection of
functions: If | = 0, set o = Tg@/}, and for [ > 0,1,k € Z we set

1
(49) Y = ﬁ(Ml + (—1)**M_y) Teip.

It can be shown that there exist functions v such that (1) both ¢ and 1& possess
exponential decay and (2) the set {¢y; : (k,l) € Z x Ny} is an orthonormal basis
for L?(R) [20]. To extend this construction to R?, we use tensor products. Let
k= (ki,...,kq) € Z% and = (I, ...,l;) € Nd, and set

d
Yty ... tg) = H@%-,l,- () -
=1

Then the set {¢y; : k € Z% 1 € N¢} is an orthonormal basis for L*(R?).
The associated Banach spaces H?, are known as modulation spaces and we define
them in more generality as follows.

Definition 4. Let m be an s-moderate weight function. A tempered distribution
f € 8'(R?) belongs to the modulation space MP, if f possesses a Wilson expansion
of the form

(50) f= Z Cri¥kl

(k,1)eZAx N
with coefficients which satisfy
a/p\ 1/q
(51) lellezs = (D (D lewlrm(t,07) ) < oo
leNg  kezd

The norm is || f||xge = llc|lme. If p = g we write M, for MEP.
If m is a sub-exponential weight and ¢%;9 € ¢, then MP: is still defined by (50)
and (51) as a subspace of ultradistributions [33, Ch. 11.4].
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While it is more convenient for our purpose, Definition 4 is not the standard
definition, instead MP:? is usually defined by the behavior of the short-time Fourier
transform as follows. Fix a “nice” function v, e.g., ¥(t) = e~ or such that both
1 and 1& have exponential decay. The short-time Fourier transform Vi, f of f with
respect to the window 1 is defined by

(52) VT/Jf(‘Ta (,d) = /Rf(t)w(t - x)e—Zm'w-t dt = <fa MwTww> :
Then f € MP4 if and only if

(53) (/ (/|wa(3:,w)|pm(x,w)pda:>q/pdw)l/q < 0

and this expression is an equivalent norm for M?4. See [33, Ch. 12.3] and [26] for
the technical details and subtleties.

5.2. Gabor Frames. Let Z be a separated set in the time-frequency plane R?¢
and let g € L?(R?) be a fixed window function. We consider frames of the form
{m(2)g : z € Z}. If Z is a lattice in R??, such a frame is called a uniform Gabor
frame (or Weyl-Heisenberg frame), whereas for arbitrary sets Z we speak of non-
uniform Gabor frames. See [18] or [33, Chs. 5-7,12,13] for the theory of uniform
Gabor frames. Non-uniform Gabor frames are not yet fully understood, some
results can be found in [8,12,32,34,41].

A Gabor frame cannot be localized in the strict sense of Definition 2. For sim-
plicity we argue in dimension d = 1 and assume that g € My° ., ie., [Vyg(2)| <

C(1 + |z|)~727¢ according to (53). Then for | # 0 we estimate that

(n(2)g, )| = % (n(2)g, (m(E,0) + (~1)*r(E, —1)) )
< %Mg,w«g,n 2|+ %Mg,w«%, —1) - 2))|

< CO+IGD =)+ O+ - =)

Thus condition (16) is not satisfied when z € Z is in the lower half plane. Intuitively
this is clear, because the basis functions v, are localized at the symmetric points
(k/2,1) and (k/2,—1) in the time-frequency plane. (This was the main insight
leading to the construction of orthonormal Wilson bases.)

Although we cannot apply Theorems 3.5 and 3.6 directly, we can overcome this
difficulty by looking at the matrix 7" associated to the frame operator

Sf=>Y (f:m(z)g)w(2)g.

2€Z

Proposition 5.1. (a) If g € M,,,. for some ¢ > 0, then the matriz entries
Tty (mn) = (SUmn, V) for (K1), (m,n) € 74 x N satisfy the estimate

k —m —s—2d—e¢
(54) Tay ommy| < C(1+ (G- n))
for (k,1),(m,n) € Z% x N¢.
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(b) If |Vog(z)| = O(e @) for some a > 0, then the matriz entries Ty (mn)
satisfy the estimate
o (k=m
(55) Tty mmy| < Cee ()
for (k,1), (m,n) € Z¢ x N¢ and some o' € (0, ).

Proof. We first, express 1y, as a linear combination of time-frequency shifts [33,
p. 271]:

Yu(t) =« H My, + (—1)N* My, )Tglﬁ(tj)

= Y H ALV 5 Ty (L)

(56) nj=+1j=1
=ap Y " MyTed(1)
ne{+1}4
koo~
= Y, (G i)
ne{x1}4

Here 9)(t) = H?Zl Y(t;), 0 < oy < 1is a non-essential normalization factor (its size
depends on the number of j with [; # 0). Also, nl = (mli, ..., nals), and the sum
runs over all 2¢ choices of n € {—1,1}<.

Since [Vyg(z)| < C(1+ |z]|)7*72¢=¢ by the assumption g € M° and since

Vs42d+e
[(m(w)ep, w(2)g)| = [(¢, w(z = w)g)]
by [33, Lemma 3.1.3], the inner products (7(z)g, ¥x;) are estimated by

k
ne{il}d
k —s—2d—e
57) <oy (1+igm-A)"
ne{x1}d

Therefore the matrix entries of T' satisfy the following

Tinsmm| = | S (Wonns 7(2)9) (m(2)g, 01

2EZ
—s—2d—e¢ k —s—2d—e¢

<0 Y Y (+lGem—al) T (G -)
n,n €{0,1}4 2€2

Carrying out the sums over Z and applying Lemma 2.2(&) we arrive at the estimate
—s—2d—e
Lo < € 3 (141 1= m)))
nn' €{0,1}4

< C (1 4hzm Qm,z —n)|)_5_2d_6,
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since [pn —n'l| > |n — 1| for n # ' and I,n € Ng.
Part (b) is proved similarly by using Lemma 2.2(b). [

Now the main theorem about nonuniform Gabor frames follows exactly as in the
proof of Theorem 3.5.

Theorem 5.2. Assume that {7(z)g : z € Z} is a frame for L*(R?) and that
gE Mz?:+2d+s for some € > 0.

(a) Then the frame operator S is invertible on all spaces MP, for each 1 < p < oo
and every s-moderate weight function m.

(b) Write the dual frame as {€, = S~H(w(2)g) : z € Z}. Then the frame expan-

S10NS

(58) f= (fem(2)g=> (fm(z)9)e

2EZ Z2EZ

converges unconditionally in ME for 1 < p < oo (and weak-* in M ).
(¢) The modulation space MP,1 < p < oo, can be characterized by the frame
coefficients as follows:

(59) [ llarz, = K 7 () 2y = IS € Mlen, 2y -

If [Vyg(2)| = O(e=*#!), then the above conclusions hold for all MP, with 1 < p <
oo and all sub-exponential weights m.

Proof. In the proof of Theorem 3.5 we have only used the decay estimates for the
entries of T. This point is settled by Prop. 5.1, consequently the proof is now
exactly the same as that of Theorem 3.5. [ |

REMARKS: 1. For uniform Gabor frames {m(ak, 8l)g : k,I € Z%} this theorem
was already proved in [33, Thm. 13.5.3]. If the condition g € M2, .. is replaced
by the slightly weaker condition g € M, ,s > 0, then the dual window v = S~'g
is also in M, [25,35]. This is quite subtle and uses methods from the theory of
symmetric Banach algebras and the representation theory of the Heisenberg group.

2. It can be shown that Theorem 5.2 also holds for the mixed norm modulation

spaces MP4 p = q.

In Theorem 5.2 we have omitted a precise statement about the time-frequency
concentration of the dual frame €, = S~!(w(z)g). It is easy to obtain such an
estimate from the boundedness of S~! on M2, namely,

€2 lasge = IS™ (m(2)9)lmge < Clim(2)gllnage < O+ [20) Nlgllage -
This implies that
[Viez(w)] < C(1+[2])° (1 + [w]) .

We now prove a sharper and uniform decay estimate for the dual frame. In view
of (57) we introduce a distance function on the time-frequency plane that reflects
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the special symmetry of the multivariate Wilson basis. For w € R*! and z =
(Zl, ceey ZQd) = (Cl, CQ) € R?* with Cl, CQ S R? we define

(60) d(w,z) = min |w— ({1,nG)] = (Z(wj —2j)* + Z (Jw;] = |zj‘)2>1/2.

—1.1)d
ne{-1,1} ey e

Note that |w — z| > d(w, z) and that the localization property (57) can be recast
as

el < C(1+d(50.2)

Now we can complete the statement of Theorem 5.2 with the natural result about
the localization of the dual Gabor frame.

Proposition 5.3. Assume that {7(z)g : z € Z} is a frame for L*(R?).
(a) If g € M for some € > 0, then the dual frame €, = S™'(n(2)g) satisfies

] Us+2d+e ) ) )
the time-frequency localization estimate

—5—2d—e¢
|Vype:(w)| SC(l—i-d(w—z)) , z€ Z,weR?.

(b) If |Vyg(2)| < Ce I then for some o/ € (0,a),

Vyér(w)| < Cem@dw2) z€ Z,weR?.
Proof. We use a notational short-cut and write v(z) = (1 + [z|)7°7247¢ (or v(2) =
e~ in case (b)). Furthermore, set 7 = (£,1) and s = (2Z,n) for k,m € Z°,

I,n € N§, and write nz = 1((1, o) := ((1,1¢) for z = (G, () € R*.
To find an estimate for the short-time Fourier transform of €, we rewrite it as

(61) (@ m)) = Y (&) (W, m(w)g).

For the second inner product we have already found an estimate in (57). The first
inner product is treated as in (25):

(62) (@) = (ST (m(2)g) ¥ = D (m(2)g, b)) (T s -

s€$ZIXNG

We use Prop. 5.1 for the entries of 7-! and (57) for the inner products in these
expansions. Substituting these estimates into (61) and (62), we obtain that

(& mw) < ¢ Y Y. s =2)w(r = s)(y'r —w)

n €{£1}4 T‘,SE%ZdXNg

= C Z Z v(s —nz)v(r — s)v(r — n'w)

nn e{x1}d T,SE%ZdXNg

< ¢ Y vlnz—ifw)
nn €{£1}4
< C'2%v(d(z,w)) .
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To resolve the sum over r and s we have used Lemma 2.2 twice, and in the last step
we have used that |nz — n'w| > d(z,w) for all n,’ € {—1,1}%. The last expression
is the announced time-frequency localization and we are done. [ |

5.3. Time-Frequency Molecules. Our final result shows that we can replace the
Gabor frame {7(z)g : z € Z} by a frame consisting of time-frequency molecules
and obtain the same conclusions.

Theorem 5.4. Let Z be a separated set in R* and let {g, : z € Z} be a frame for
L2(R?) satisfying the uniform estimates

(63) Vg, (w)| < CA+ |w— z|)_s_2d_€, z€ Z.

Then the frame operator Sf = 3 . (f,9:)g. is invertible simultaneously on all
MP for each 1 < p < oo and all s-moderate weights m.
The dual frame g, = S~ (g,) satisfies the localization estimates
—s—2d—e

Vyge(w)] < C'(1+ d(w — 2)) z€Z.

The frame expansions

F=Y (f9:03-= > (f.3:)9

z2€Z 2€Z
converge unconditionally in the modulation spaces MP? for 1 < p < co, and

— /
Allflg, < (S KA EPmEP) " < Blflag, . 1 e M.

Z2EZ

The same conclusions hold for exponentially localized time-frequency molecules,
i.e., assuming |Vyg,(w)| < C—elv== 2 € Z.

Proof. In the proof of Theorems 3.5, 5.2, and Prop. 5.3 we have only used the
estimates (63), but not the precise form of the frame. Therefore the proof is the
Same. [
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