MAT 280: Applied \& Computational Harmonic Analysis Homework 3: due Wednesday, 06/02/04

Problem 1: An n-dimensional spike process simply generates the standard basis vectors $\left\{\boldsymbol{e}_{j}\right\}_{j=1}^{n} \subset$ \mathbb{R}^{n} in a random order with equal probability, where \boldsymbol{e}_{j} has one at the j th entry and all the other entries are zero. One can view this process as a unit impulse located at a random position between 1 and n.
(a) Compute the covariance matrix of this process.
(b) Show that the Karhunen-Loève basis of this process is any orthonormal basis in \mathbb{R}^{n} containing a "DC" basis vector $\frac{1}{\sqrt{n}}(1,1, \cdots, 1)^{T}$.
Problem 2: Consider the following stochastic process called the ramp process:

$$
X(t)=t-H(t-\tau), \quad t \in[0,1), \tau \sim \operatorname{unif}[0,1)
$$

where $H(\cdot)$ is the Heaviside step function, i.e., $H(t)=1$ if $t \geq 0$; and $H(t)=0$ if $t<0$.
(a) Show that the covariance function of this process is

$$
\Gamma(s, t)=\min (s, t)-s t, \quad 0 \leq s, t \leq 1 .
$$

(b) Show that the Karhunen-Loève basis functions of this process are of the following form:

$$
\phi_{k}(t)=\sqrt{2} \sin \pi k t, \quad k=1,2, \ldots
$$

(c) Discretize this process as follows. Let our sampling points be $t_{k}=\frac{2 k+1}{2 n}, k=0, \ldots, n-$

1. Suppose the discontinuity $t=\tau$ does not happen exactly at the sampling points. Then all the realizations whose discontinuities are located anywhere in the open interval $\left(\frac{2 k-1}{2 n}, \frac{2 k+1}{2 n}\right)$ have the same discretized version. Therefore, any realization now has the following form:

$$
\boldsymbol{x}_{j}=\left(x_{0 j}, \ldots, x_{n-1, j}\right)^{T}, \quad x_{k j}=\left\{\begin{array}{l}
\frac{2 k+1}{2 n}, \quad \text { for } k=0, \ldots, j-1 \\
\frac{2 k+1}{2 n}-1, \quad \text { for } k=j, \ldots, n-1,
\end{array}\right.
$$

where j is picked uniformly randomly from the set $\{0,1, \cdots, n-1\}$. (Note that the index of the vector components starts with 0 for convenience). Take $n=256$, and generate 256 realizations of this process. (You only have to construct a data matrix X whose column vectors are $\boldsymbol{x}_{j}, j=0, \ldots, 255$. Then compute the covariance matrix, compute the eigenvectors (i.e., KL vectors) using matlab, and compare those eigenvectors with the sinusoids analytically obtained in (b).

Problem 3: Let $\Phi \in L^{2}\left(\mathbb{R}^{2}\right)$. Then, there exists $f \in L^{2}(\mathbb{R})$ such that $\Phi(x, \xi)=S f(x, \xi)(S f$ is the windowed Fourier transform of f) if and only if

$$
\Phi\left(x_{0}, \xi_{0}\right)=\iint \Phi(x, \xi) K\left(x_{0}, x, \xi_{0}, \xi\right) \mathrm{d} x \mathrm{~d} \xi
$$

where

$$
K\left(x_{0}, x, \xi_{0}, \xi\right)=\left\langle g_{x, \xi}, g_{x_{0}, \xi_{0}}\right\rangle=\int g(y-x) g\left(y-x_{0}\right) \mathrm{e}^{-2 \pi \mathrm{i}\left(\xi_{0}-\xi\right) y} \mathrm{~d} y
$$

Hint: To prove the necessity, in the definition of the windowed Fourier transform of f, replace f by the reconstruction formula of f from its windowed Fourier transform. To prove the sufficiency, define f as

$$
f(x)=\iint \Phi(y, \xi) g(x-y) \mathrm{e}^{2 \pi \mathrm{i} \xi x} \mathrm{~d} \xi \mathrm{~d} y
$$

and show $\Phi(x, \xi)=S f(x, \xi)$.
Problem 4: Prove that if $K \in \mathbb{R}-\{0\}$, then the set $\left\{\phi_{k}(x)=\exp (2 \pi \mathrm{i} k x / K)\right\}_{k \in \mathbb{Z}}$ forms a tight frame of $L^{2}[0,1]$. Then, compute the frame bounds.

