MAT 271: Computational Harmonic Analysis Comments on Homework 1

Problem 1: There are a couple of ways to show $\hat{f}(\xi)$ is continuous. One is to use the Dominant Convergence Theorem (D.C.T.) as follows. Because $|f(x)e^{-2\pi i(\xi+h)x} - f(x)e^{-2\pi i\xi x}| \le 2|f(x)|$ and $f \in L^1(\mathbb{R})$, the D.C.T. implies that $\hat{f}(\xi+h) \to \hat{f}(\xi)$ as $h \to 0$. The other way is to split the integral into the two regions of integration:

$$\begin{aligned} |\hat{f}(\xi+h) - \hat{f}(\xi)| &\leq \int_{\mathbb{R}} |e^{-2\pi i hx} - 1| |f(x)| \, \mathrm{d}x \\ &= \left(\int_{|x| \leq M} + \int_{|x| \leq M} \right) |e^{-2\pi i hx} - 1| |f(x)| \, \mathrm{d}x \end{aligned}$$

Given $\epsilon > 0$, the second integral can be made less than ϵ by taking M sufficiently large. The first integral is majorized by

$$2\pi |h| \int_{|x| \le M} |x| |f(x)| \,\mathrm{d}x.$$

Therefore, with this choice of M, we have

$$\limsup_{h \to 0} \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi + h) - \hat{f}(\xi)| \le \epsilon.$$

But ϵ was arbitrary. This means that in fact, $\hat{f}(\xi)$ is *uniformly* continuous. This way of proving the uniform continuity can be easily generalized to *n*-dimensional Fourier transforms.

- **Problem 2:** Caution: Isometry means that $\|\delta_s f\|_2 = \|f\|_2$ in the L^2 norm.
- **Problem 3:** (c) You need to justify that $f(x) \to 0$ as $|x| \to \infty$. (d) You need to justify why the order of integrations can be swapped.
- **Problem 4:** There are several ways to derive the Fourier transform of the Gaussian. I believe the best way is the following.

Consider the derivative:

$$g'(x;\sigma) = -\frac{1}{\sqrt{2\pi\sigma^3}} x e^{-x^2/2\sigma^2}$$
$$\implies \sigma^2 g' = -xg$$
$$\implies \sigma^2 (2\pi i\xi)\hat{g} = -\frac{i}{2\pi} \frac{\mathrm{d}\hat{g}}{\mathrm{d}\xi}$$
$$\implies \frac{\mathrm{d}\hat{g}}{\mathrm{d}\xi} = -4\pi^2 \sigma^2 \xi \hat{g}$$

This is a simple ODE and we can get the solution:

$$\hat{g}(\xi;\sigma) = C \mathrm{e}^{-2\pi^2 \sigma^2 \xi^2}.$$

But $\hat{g}(0) = 1$ because this is the integral of the probability density function of the normal distribution with mean 0 and variance σ^2 . Therefore, C = 1.

$$\hat{g}(\xi;\sigma) = e^{-2\pi^2 \sigma^2 \xi^2}.$$

Problem 5: If you state the equality condition of the Cauchy-Schwarz inequality used in this uncertainty inequality, then it is automatically, "if and only if". The bottom line is the Cauchy-Schwarz inequality in this case becomes:

$$||f||^4 = 4\left(\operatorname{Re}\int x\overline{f(x)}f'(x)\,\mathrm{d}x\right)^2 \le \int x^2|f(x)|^2\,\mathrm{d}x\int |f'(x)|^2\,\mathrm{d}x,$$

and the equality holds if and only if

$$f'(x) = cxf(x)$$
, for some constant c.

So, we can easily get the solution:

$$f(x) = a e^{cx^2/2}$$
, for some constants a, c .

However, the function f must be in $L^2(\mathbb{R})$. So, we must have c < 0. Otherwise, this function cannot have a finite norm in $L^2(\mathbb{R})$. So, we can set $c = -1/\sigma^2$ for some $\sigma > 0$, and get the form:

 $f(x) = a e^{-x^2/2\sigma^2}$, for some constants a and $\sigma > 0$.