MAT 271: Computational Harmonic Analysis Comments on Homework 1

Problem 1: There are a couple of ways to show $\hat{f}(\xi)$ is continuous. One is to use the Dominant Convergence Theorem (D.C.T.) as follows. Because $\left|f(x) \mathrm{e}^{-2 \pi \mathrm{i}(\xi+h) x}-f(x) \mathrm{e}^{-2 \pi \mathrm{i} \xi x}\right| \leq$ $2|f(x)|$ and $f \in L^{1}(\mathbb{R})$, the D.C.T. implies that $\hat{f}(\xi+h) \rightarrow \hat{f}(\xi)$ as $h \rightarrow 0$. The other way is to split the integral into the two regions of integration:

$$
\begin{aligned}
|\hat{f}(\xi+h)-\hat{f}(\xi)| & \leq \int_{\mathbb{R}}\left|\mathrm{e}^{-2 \pi \mathrm{i} h x}-1\right||f(x)| \mathrm{d} x \\
& =\left(\int_{|x| \leq M}+\int_{|x| \leq M}\right)\left|\mathrm{e}^{-2 \pi \mathrm{i} h x}-1\right||f(x)| \mathrm{d} x
\end{aligned}
$$

Given $\epsilon>0$, the second integral can be made less than ϵ by taking M sufficiently large. The first integral is majorized by

$$
2 \pi|h| \int_{|x| \leq M}|x||f(x)| \mathrm{d} x .
$$

Therefore, with this choice of M, we have

$$
\limsup \sup _{\xi \in \mathbb{R}}|\hat{f}(\xi+h)-\hat{f}(\xi)| \leq \epsilon .
$$

But ϵ was arbitrary. This means that in fact, $\hat{f}(\xi)$ is uniformly continuous. This way of proving the uniform continuity can be easily generalized to n-dimensional Fourier transforms.

Problem 2: Caution: Isometry means that $\left\|\delta_{s} f\right\|_{2}=\|f\|_{2}$ in the L^{2} norm.
Problem 3: (c) You need to justify that $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$. (d) You need to justify why the order of integrations can be swapped.

Problem 4: There are several ways to derive the Fourier transform of the Gaussian. I believe the best way is the following.

Consider the derivative:

$$
\begin{aligned}
& g^{\prime}(x ; \sigma)=-\frac{1}{\sqrt{2 \pi} \sigma^{3}} x \mathrm{e}^{-x^{2} / 2 \sigma^{2}} . \\
& \Longrightarrow \sigma^{2} g^{\prime}=-x g \\
& \Longrightarrow \sigma^{2}(2 \pi \mathrm{i} \xi) \hat{g}=-\frac{\mathrm{i}}{2 \pi} \frac{\mathrm{~d} \hat{g}}{\mathrm{~d} \xi} \\
& \Longrightarrow \frac{\mathrm{~d} \hat{g}}{\mathrm{~d} \xi}=-4 \pi^{2} \sigma^{2} \xi \hat{g}
\end{aligned}
$$

This is a simple ODE and we can get the solution:

$$
\hat{g}(\xi ; \sigma)=C \mathrm{e}^{-2 \pi^{2} \sigma^{2} \xi^{2}}
$$

But $\hat{g}(0)=1$ because this is the integral of the probability density function of the normal distribution with mean 0 and variance σ^{2}. Therefore, $C=1$.

$$
\hat{g}(\xi ; \sigma)=\mathrm{e}^{-2 \pi^{2} \sigma^{2} \xi^{2}}
$$

Problem 5: If you state the equality condition of the Cauchy-Schwarz inequality used in this uncertainty inequality, then it is automatically, "if and only if". The bottom line is the Cauchy-Schwarz inequality in this case becomes:

$$
\|f\|^{4}=4\left(\operatorname{Re} \int x \overline{f(x)} f^{\prime}(x) \mathrm{d} x\right)^{2} \leq \int x^{2}|f(x)|^{2} \mathrm{~d} x \int\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x
$$

and the equality holds if and only if

$$
f^{\prime}(x)=c x f(x), \quad \text { for some constant } c .
$$

So, we can easily get the solution:

$$
f(x)=a \mathrm{e}^{c x^{2} / 2}, \quad \text { for some constants } a, c .
$$

However, the function f must be in $L^{2}(\mathbb{R})$. So, we must have $c<0$. Otherwise, this function cannot have a finite norm in $L^{2}(\mathbb{R})$. So, we can set $c=-1 / \sigma^{2}$ for some $\sigma>0$, and get the form:

$$
f(x)=a \mathrm{e}^{-x^{2} / 2 \sigma^{2}}, \quad \text { for some constants } a \text { and } \sigma>0
$$

