
MAT 271: Applied & Computational Harmonic
AnalysisComments on Homework 2

Problem 1: It is important to notice that this shah (or comb) function is not really a function, but
ageneralized functionor also known as adistribution. So,you cannot use the usual Fourier
transform definition.

The best way to solve this problem is to split it into two subproblems:

(1) ShowF{III1}(ξ) = III1(ξ);

(2) Apply the dilation operatorδA to III1(x) and use the the Fourier transform formula:
F{δAf}(ξ) = δ1/AF{f}(ξ).

As for (1), I stated this in my lecture when we discussed the sampling theorem, but this is
what I really wanted you to show. The correct proof goes like this. Let us writeIII1(x) as
III(x). First since the shah function is a generalized function, its Fourier transform is defined
by pairing it with a very nice functionφ in the Schwartz space§ (a space of functions of
infinitely many times differentiable and decaying faster than any polynomials in both space
and frequency domain) as:

〈F{III}, φ〉 = 〈III, F{φ}〉

=

∫
III(ξ)φ̂(ξ) dξ

=
∑
k∈Z

φ̂(k)

(a)
=

∑
k∈Z

φ(k)

=

∫
III(ξ)φ(ξ) dξ.

Therefore,̂III(ξ) = III(ξ). The equality (a) above is called thePoisson summation formula,
and will be proved simply as follows: Consider a periodized version ofφ(x), i.e.,∑

k∈Z

φ(x− k).



This is clearly periodic with period1. Thus, we can expand this into a Fourier series as:∑
k∈Z

φ(x− k) =
∑
n∈Z

cne2πinx

=
∑
n∈Z

(∫ 1/2

−1/2

∑
k∈Z

φ(y − k)e−2πiny dy

)
e2πinx

=
∑
n∈Z

(∑
k∈Z

∫ 1/2

−1/2

φ(y − k)e−2πin(y−k) dy

)
e2πinx

=
∑
n∈Z

(∫ ∞

−∞
φ(y)e−2πiny dy

)
e2πinx

=
∑
n∈Z

φ̂(n)e2πinx.

Settingx = 0 in both sides, we get the Poisson summation formula:∑
k∈Z

φ(k) =
∑
k∈Z

φ̂(k).

Once we establish (1), i.e.,̂III1(ξ) = III1(ξ), it is easy to get (2) by the dilation formula.
First, it is important to notice thatδ(ax) = (1/a)δ(x) or aδ(ax) = δ(x). Now,

IIIA(x) =
∑
k∈Z

δ(x− kA) =
∑
k∈Z

1

A
δ(x/A− k) =

1√
A

δA III(x).

F{IIIA}(ξ) = F

{
1√
A

δA III

}
(ξ)

=
1√
A

δ1/A III(ξ)

= III(Aξ)

=
∑
k∈Z

δ(Aξ − k)

=
∑
k∈Z

1

A
δ(ξ − k/A)

=
1

A
III1/A(ξ).

I noticed that some of you had tried to compute the Fourier transform of the exponential
functionexp(2πikx/A) in this problem, but this does not work because such an exponential
function is neither inL1(R) norL2(R).



Problem 2: This was an easy problem. Most of you answered correctly.

Problems 3–4: (a) A few people didn’t simplifycos(πk) as(−1)k andsin(πk) as0. Sincek is
an integer, you should use(−1)k. By the same token,sin(πk) = 0, of course. Also
several people did not treat the case ofk = 0. c0 carries very important information,
i.e., the so-called DC component of an input function. Thus, do not forget to compute
c0.

(b) The point of this problem is to figure out the difference between the hand-derived Fourier
series coefficients and the the DFT coefficients computed via the FFT function of MAT-
LAB. Many people plotted and compared the absolute values of the FFT coefficients
and hand-computed Fourier coefficients. That only gives you a part of the story. You
really need to plot and compare the real part and imaginary part separately without tak-
ing the absolute values in order to see the real difference between the hand-computed
Fourier coefficients and the output of the MATLABfft function!

First of all, you need to go back to the original definition of the DFT and the Fourier
coefficients.

ck =

∫ 1
2

− 1
2

f(x)e−2πikx dx

≈
N−1∑
`=0

f(x`)e
−2πikx`∆x, x` = −1

2
+ `∆x and∆x =

1

N

=
1

N

N−1∑
`=0

f

(
−1

2
+

`

N

)
e−2πik(−1/2+`/N)

=
e−πik

N

N−1∑
`=0

f

(
−1

2
+

`

N

)
e−2πik`/N

=
(−1)k

N

N−1∑
`=0

f

(
−1

2
+

`

N

)
e−2πik`/N

=
(−1)k

N

N−1∑
`=0

f` e−2πik`/N .

And finally, the summation portion can be computed byfft (non-unitary original
version) in MATLAB. Here is my MATLAB script for Problem 3. I also put my codes
online, so please download them and run them to see how much these two sets of
coefficients agree.

% Problem 3



% define the basic parameters.
N=1024;
a=-0.5;
b=0.5;

% Create an array of N equidistant points over [a,b].
% Trying to exclude the point x=b=0.5 from the samples.
x=linspace(a,b,N+1);
x=x(1:end-1);

% Create a function.
y = x; % In problem 4, this should be y=x.ˆ2, of course.

% Normalize the function to have a unit Lˆ2 norm.
ey = norm(y);
y = y/ey;

% Do the fft to approximate the Fourier series coefficients over this
% interval. Note that we need to have 1/N here. You need to go back
% to the original definition of the Fourier coefficients and its
% approximation by the trapezoidal rule.
% Note that fft essentially view the input data is defined over the
% interval on [0,1], instead of [-1/2,1/2]. So you need to do either
% of the following two:
% 1) Apply fftshift to the input vector before taking fft; or
% 2) Apply the complex exponential factor exp(pi*k)=(-1)ˆk to the output
% of fft, which is equivalent to changing the signum of the fft results
% alternatively as fy(2:2:N)=-fy(2:2:N), where fy=fft(y)/N.

fy = fft(y)/N;
fy(2:2:N)=-fy(2:2:N);

% Now, prepare the analytical Fourier coefficients you derived by
% hand.

c = zeros(1,N);
% c(1) = 1/12.0; % for problem 4.
for k=1:N-1

c(k+1)=i*(-1)ˆk/(2*pi*k); % c(k+1)=(-1)ˆk/(2*(pi*k)ˆ2); % for problem 4.
end

% Normalize the coefficients
c = c/ey;



% Now plot real and imaginary part separately using the semilog plot.

figure(1)
clf;
subplot(1,2,1);
plot(real(c(1:N/2)));
grid
hold on
plot(real(fy(1:N/2)),’r.’);
title(’Real Part’)
hold off

subplot(1,2,2);
plot(imag(c(1:N/2)));
grid
hold on
plot(imag(fy(1:N/2)),’r.’);
title(’Imaginary Part’)
hold off

% Let’s look at the more details around the origin.
figure(2)
clf;
subplot(1,2,1);
plot(real(c(1:N/16)),’o’);
grid
hold on
plot(real(fy(1:N/16)),’r.’);
title(’Real Part’)
hold off

subplot(1,2,2);
plot(imag(c(1:N/16)),’o’);
grid
hold on
plot(imag(fy(1:N/16)),’r.’);
title(’Imaginary Part’)
hold off

Do the similar computation for Problem 4. You can see that they match closely, but not exact
due to the approximation error by the trapezoidal rule and sampling. What happens if we
increase the number of samples, e.g., toN = 215?

Problem 5: 1)–3) Several people use the normal distribution factor as the parametera, i.e.,a =
1/(σ

√
2π). But my intention was to usea as the normalization constant so that the`2 norm



of the input vector becomes1. Once you do that, then you can follow the same strategy here
as above.

4) You got mixed results. In fact, it is true that the larger the value ofσ (i.e., the wider the
Gaussian is), the faster the the decay of its Fouriertransformbecause of it is proportional
to exp(−2πσ2ξ2) in the Fourier domain. But unfortunately, I am asking the decay of the
Fourier coefficientsof the Gaussian on thefinite interval [−1/2, 1/2). So, the boundary
effects atx = ±1/2 becomes more prominent compared to the smoothness. The Fourier
coefficient magnitudes follow more likeexp(−2πσ2ξ2) in the low frequency region. But
then, the boundary effects start dominating. This fact was obscured if you use the wrong
normalizationa. Also, you should use MATLAB’ssemilogy program to see the more
detailed behaviors of the Fourier coefficients.

5) In theory, clearly the decay of the Fourier coefficients of the Gaussian functions are faster
than that of the polynomials such asax or ax2, which is the case in the low frequency region.
But in the finite length DFT, the quadratic polynomial behaves similarly to the Gaussian
with appropriate value ofσ for the higher frequency part. Thus, the decay of the Fourier
coefficients ofax2 is slower than those of the Gaussian, but the decay curve in the high
frequency range looks similar to that of the Gaussian withσ = 1.

6) The Fourier the Gaussian in this case is the following using Problem 4 of HW #1:

F{ae−x2/(2σ2)} = F{a
√

2πσg(x; σ)} = a
√

2πσ

∫ ∞

−∞
g(x; σ)e−2πiξx dx = a

√
2πσe−2π2σ2ξ2

.

On the other hand, using the MATLABfft function, we can only approximate the Fourier
coefficients of the periodized Gaussian (or mutilated Gaussian) on[−1/2, 1/2]:

ck =

∫ 1
2

− 1
2

g(x; σ)e−2πikx dx.

Actual output is even different from thisck due to the error by the trapezoidal formula.
Therefore, there are two errors involved here: 1) Truncation of the interval; and 2) error due
to the trapezoidal rule. For more details, I strongly recommend to read [1, Chap. 6].

Problem 6: Most of the people got this problem right. You just need to use some trigonometric
identity and the summation formula of a geometric series.
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