
MAT 271: Applied & Computational Harmonic
AnalysisComments on Homework 3

Problem 1: Everyone got Part (a) correct. However, to show the claim of Part (b), what you really
need to show is:

1. Compute the eigenvalues of the covariance matrixΓ, which is0 and1/n with geometric
multiplicity 1 andn− 1, respectively.

2. Γ is a real symmetric matrix; thus it can beunitarily diagonalizable, i.e., there exists an
orthonormal basis diagonalizingΓ.

3. The above two also means that the eigenspace corresponding to the eigenvalue0 and
the one corresponding to1/n are orthogonal.

For more information and the origin of the interest of this process, please read my own paper
[1], [8], [7], and references therein.

Problem 2: Everyone got Part (a) correct. However, many people did Part (b) unsatisfactorily.
Many people simply substitutedφk(t) =

√
2 sin(kπt) into the integral equation, computing

the eigenvalues, and claimed they are the eigenfunctions. With this argument, you cannot
be sure whether there exists other eigenfunctions. The correct argument is to derive the
eigenvalue problem in the ordinary differential equation from the integral equation, that is:

λφ(t) =

∫ 1

0

Γ(t, s)φ(s) ds

=

∫ 1

0

(min(t, s)− ts)φ(s) ds

=

∫ t

0

(s− ts)φ(s) ds +

∫ 1

t

(t− ts)φ(s) ds

=

∫ t

0

sφ(s) ds− t

∫ t

0

sφ(s) ds + t

∫ 1

t

(1− s)φ(s) ds

Now, differentiating both sides with respect tot leads to the following ODE:

φ′′(t) = −1

λ
φ(t)

The boundary condition can be derived by settingt = 0 and t = 1 in the above integral
equation. It turns out to be theDirichlet boundary condition:

φ(0) = φ(1) = 0.

From these, we can derive the desired solution.



For Part (c), some people usedSVDinstead ofEIG and claimed thatSVDgave them better
or closer eigenvectors to the analytical ones compared toEIG. OK, why does this happen?
It’s a good exercise to think about it!

For more information about this process, please read the following papers [2], [3], [5, p. 19],
[9].

Problem 3: Here, I would like to point out the two major mistakes several people made.

• If you use the functionDCTMTX, then specifying the lowest 72 frequency DCT coef-
ficients are trickier than usingDCT2. Several people used722 = 5184 coefficients.
That’s why the DCT reconstructions were so good for some of you.

• It is very important to know that the MATLABEIG function sorts the eigenvalues and
eigenvectors in theincreasing order, i.e., from the smallest to the largest. Thus, to use
the topk KLB vectors means that you need to use the lastk KLB vectors in the KLB
matrix if you do not reorder it immediately after getting it fromEIG. That is why the
relative`2 curves for KLT were worse than those of DCT for some of you. For those
of you made that mistake, I would strongly suggest that you recompute the error curve
and plot against those of the DCT!

The other thing I want to point out is thatone should use the inverse transform routines to
compute the basis functions. Note that if the input signal is one of the basis functions/vectors,
then the output is one of the standard basis vector. This means that if you apply the inverse
transform to the identity matrix, you get all the basis functions. Thus, useIDCT2 to compute
the DCT basis vectors! That’s much faster and nicer than the code segments some of you
wrote.

For more information about this dataset, please read the following papers [4], [6].
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terization of human faces, IEEE Trans. Pattern Anal. Machine Intell., 12 (1990), pp. 103–108.



[5] Y. M EYER, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,
vol. 22 of University Lecture Series, AMS, Providence, RI, 2001.

[6] N. SAITO, Image approximation and modeling via least statistically dependent bases, Pattern
Recognition, 34 (2001), pp. 1765–1784.

[7] , The generalized spike process, sparsity, and statistical independence, in Modern Signal
Processing, D. Rockmore and J. D. Healy, eds., vol. 46 of MSRI Publications, Cambridge
University Press, 2004, pp. 317–340.
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