
MAT 271: Applied & Computational Harmonic Analysis
Comments on Homework 1

Problem 1: This was an easy problem and everyone solved it correctly!

Problem 2: (c) You need to justify that f (x) → 0 as |x| → ∞ after integration by parts. This
comes from the assumption that f ∈ L1.

(d) You need to show that f ∗ g ∈ L1(R) first, which is rather straightforward. Then, in
the process of showing F { f ∗ g }(ξ) = f̂ (ξ) · ĝ (ξ), you need to justify why the order of
integrations can be swapped. This should be done by Fubini’s theorem. For engineer-
ing students who have not learned Fubini’s theorem, please look at the Wikipedia en-
try: http://en.wikipedia.org/wiki/Fubini’s_theorem, In essence, in order to
change the integration order of a function f (x, y), you need to check f (·, y) ∈ L1 as a func-
tion of the first variable for almost all y in the integration region and f (x, ·) ∈ L1 as a func-
tion of the second variable for almost all x in the integration region. In that Wikipedia
page, there is an interesting example demonstrating that changing the order of integra-
tions gives you different answer, i.e.,∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy =−π

4

whereas ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx = π

4
.

Another great reference for the change of integration order is the famous Fourier analysis
book by T. Körner [1, Chap. 47, 48]. Anyone who has not looked at this book definitely
should take a look at it. It contains all sorts of interesting history, facts, applications of the
Fourier analysis, as well as its unexpected relationship to the other parts of mathematics
and sciences.

Problem 3: There are several ways to derive the Fourier transform of the Gaussian. I believe
the best way is the following.

Consider the derivative:

g ′(x;σ) =− 1p
2πσ3

xe−x2/2σ2
.

=⇒σ2g ′ =−xg

=⇒σ2(2πiξ)ĝ =− i

2π

dĝ

dξ

=⇒ dĝ

dξ
=−4π2σ2ξĝ
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This is a simple ODE and we can get the solution:

ĝ (ξ;σ) =C e−2π2σ2ξ2
.

But ĝ (0) = 1 because this is the integral of the probability density function of the normal
distribution with mean 0 and variance σ2. Therefore, C = 1.

ĝ (ξ;σ) = e−2π2σ2ξ2
.

Note that several of you showed that∫ ∞

−∞
exp

(
− (x +2πσ2iξ)2

2σ2

)
dx =

∫ ∞

−∞
exp

(
− u2

2σ2

)
du.

This argument is too formal, and needs more precise explanation because the first inte-
gral contains the imaginary number. One can proceed from here if he/she is very careful,
but it is better to avoid this argument. That’s why the first proof using the ODE is prefer-
able.

Problem 4: In order to prove sinc function is in L2, several people stated that the integral:∫ ∞

−∞
dx

π2x2
<∞,

which is not true! You need to split the integration range into two parts, say |x| ≤ δ and
|x| > δ for some δ> 0 as follows:

∫ ∞

−∞
sin2(πx)

π2x2
dx =

∫
|x|≤δ

sin2(πx)

π2x2
dx +

∫
|x|>δ

sin2(πx)

π2x2
dx

≤
∫
|x|≤δ

1dx +
∫
|x|>δ

dx

π2x2

= 2δ+ 2

π2δ
<∞.

It is not necessary to obtain the exact value of ∥sinc(·)∥2. The question only asks to show
that ∥sinc(·)∥2 <∞.

Problem 5: If you state the equality condition of the Cauchy-Schwarz inequality used in this
uncertainty inequality, then it is automatically, “if and only if”. The bottom line is the
Cauchy-Schwarz inequality in this case becomes:

∥ f ∥4 = 4

(
Re

∫
x f (x) f ′(x)dx

)2

≤
∫

x2| f (x)|2 dx
∫

| f ′(x)|2 dx,

2



and the equality holds if and only if

f ′(x) = cx f (x), for some constant c.

So, we can easily get the solution:

f (x) = aecx2/2, for some constants a,c.

However, the function f must be in L2(R). So, we must have c < 0. Otherwise, this function
cannot have a finite norm in L2(R). So, we can set c = −1/σ2 for some σ > 0, and get the
form:

f (x) = ae−x2/2σ2
, for some constants a and σ> 0.

Problem 6: It is important to notice that this shah (or comb) function is not really a function,
but a generalized function or also known as a distribution. So, you cannot use the usual
Fourier series/transform definitions.

The best way to solve this problem is to split it into two subproblems:

(1) Show F {III1}(ξ) = III1(ξ);

(2) Apply the dilation operator δA to III1(x) and use the the Fourier transform formula:
F {δA f }(ξ) =δ1/AF { f }(ξ).

As for (1), I stated this in my lecture when we discussed the sampling theorem, but this
is what I really wanted you to show. The correct proof goes like this. Let us write III1(x)
as III(x). First of all, since the shah function is a generalized function, its Fourier trans-
form is defined by pairing it with a very nice function φ in the Schwartz space § (a space
of functions of infinitely many times differentiable and decaying faster than any polyno-
mials in both space and frequency domain). With the slight abuse of notation of

〈
f , g

〉=∫
f (x)g (x)dx instead of the usual

∫
f (x)g (x)dx, we have〈

F {III},φ
〉 = 〈

III,F {φ}
〉

=
∫

III(ξ)φ̂(ξ)dξ

= ∑
k∈Z

φ̂(k)

(a)= ∑
k∈Z

φ(k)

=
∫

III(ξ)φ(ξ)dξ

= 〈
III,φ

〉
.

Since φ ∈ § is arbitrary, we can conclude ÎII(ξ) = III(ξ). The equality (a) above is called the
Poisson summation formula, and will be proved simply as follows: Consider a periodized
version of φ(x), i.e., ∑

k∈Z
φ(x −k).
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This is clearly periodic with period 1. Thus, we can expand this into a Fourier series as:∑
k∈Z

φ(x −k) = ∑
n∈Z

cne2πinx

= ∑
n∈Z

(∫ 1/2

−1/2

∑
k∈Z

φ(y −k)e−2πiny dy

)
e2πinx

= ∑
n∈Z

(∑
k∈Z

∫ 1/2

−1/2
φ(y −k)e−2πin(y−k) dy

)
e2πinx

= ∑
n∈Z

(∫ ∞

−∞
φ(y)e−2πiny dy

)
e2πinx

= ∑
n∈Z

φ̂(n)e2πinx .

Setting x = 0 in both sides, we get the Poisson summation formula:∑
k∈Z

φ(k) = ∑
k∈Z

φ̂(k).

Once we establish (1), i.e., ÎII1(ξ) = III1(ξ), it is easy to get (2) by the dilation formula. First,
it is important to notice that δ(ax) = (1/a)δ(x) or aδ(ax) = δ(x). Now,

IIIA(x) = ∑
k∈Z

δ(x −k A) = ∑
k∈Z

1

A
δ(x/A−k) = 1p

A
δA III(x).

F {IIIA}(ξ) = F

{
1p
A
δA III

}
(ξ)

= 1p
A
δ1/A III(ξ)

= III(Aξ)

= ∑
k∈Z

δ(Aξ−k)

= ∑
k∈Z

1

A
δ(ξ−k/A)

= 1

A
III1/A(ξ).

I noticed that some of you had tried to compute the Fourier transform of the exponential
function exp(2πikx/A) in this problem, but this does not work because such an exponen-
tial function is neither in L1(R) nor L2(R).
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