MAT 271: Applied \& Computational Harmonic Analysis Homework 2: due Monday, 05/15/23

Problem 0: Install the Julia programming language on your computer, and familiarize yourself with the Julia programming environment. I strongly suggest that you view this highly useful webpage to install the Julia system on your computer. Then, try to watch some Julia tutorials avalable on YouTube. com.

Problem 1: Let $\boldsymbol{w}_{N}^{k}:=\frac{1}{\sqrt{N}}\left[\omega_{N}^{0}, \omega_{N}^{k}, \omega_{N}^{2 k} \ldots, \omega_{N}^{k(N-1)}\right]^{\top} \in \mathbb{C}^{N}$, where $\omega_{N}=\exp (2 \pi \mathrm{i} / N)$. Prove

$$
\left\langle\boldsymbol{w}_{N}^{k}, \boldsymbol{w}_{N}^{\ell}\right\rangle=\delta_{k, \ell}
$$

where $\delta_{k, \ell}$ is Kronecker's delta and $0 \leq k, \ell \leq N-1$.
Problem 2: Consider a periodized versions of the function over [$-1 / 2,1 / 2$):

$$
f(x)=a x, \quad-\frac{1}{2} \leq x<\frac{1}{2}, \quad a>0 .
$$

(a) Compute the Fourier coefficients c_{k} of this periodic function by hand.
(b) Using Julia, do the following:

1) Determine the value of a so that after the discretization of this function on a uniform grid of length 1024, the resulting vector has a unit ℓ^{2}-norm;
2) Apply Julia's fft to the input vector prepared in 1); then divide the results by $\mathrm{N}=1024$. Note that you need to add the FFTW.jl package in your Julia session via using Pkg; Pkg.add("FFTW")
3) Display both the real and imaginary parts of the output vector computed in 2). I would suggest the use of the Plots.jl package for various plots;
4) Plot the hand-computed Fourier coefficients in (a) with a computed in 1);
5) Do these two ways of computing Fourier coefficients agree? What is your reasoning if they do not. Then, manipulate the input signal so that the result of the Julia $f f t$ followed by division by N best matches with the hand-computed Fourier coefficients used in Part 4. Throughout this problem, be as quantitative as possible.

Problem 3: Consider a periodized version (with period 1) of the following function:

$$
f(x)=a x^{2}, \quad-\frac{1}{2} \leq x<\frac{1}{2}, \quad a>0 .
$$

Repeat (a), (b) of Problem 2 for this function. In addition,
(c) Compare the speed of the decay of the Fourier coefficients of this function with that of Problem 2. Which decays faster? Why?

Problem 4: Consider a periodized version (with period 1) of the following function:

$$
f(x)=a \mathrm{e}^{-x^{2} / 2 \sigma^{2}}, \quad-\frac{1}{2} \leq x<\frac{1}{2}, \quad a, \sigma>0 .
$$

Repeat (1)-(3) of (b) of Problem 3 with $\sigma=1,0.1,0.01$. In addition,
4) Compare the speed of the decay of the Fourier coefficients of this function with these different values of σ;
5) Compare these decays with those of Problems 2 and 3. Which decays faster? Why?
6) Do they agree with the discretized version of the Fourier transform formula of Problem 3 of HW \#1 (with appropriate multiplicative constants)? If not, state your interpretation/reasoning.

Problem 5: Let us use the definition of DFT as in my lecture. Hence, given an input vector \boldsymbol{f} of length N, the matrix-vector representation of the DFT applied to \boldsymbol{f} is $\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}$.
(a) Let W_{N} be the DFT matrix defined in my lecture. Let D_{N} be the matrix representation of the Julia function $f f t$ so that the result of $f f t$ applied to the vector \boldsymbol{f} of length N in Julia is $D_{N} \boldsymbol{f}$. Express D_{N} using W_{N}.
(b) Let S_{N} be the matrix representation of the Julia function $f f t s h i f t$ as in my lecture. Then the Julia expression $f f t s h i f t(f f t(f))$ corresponds to the matrix-vector expression $S_{N} D_{N} \boldsymbol{f}$. show that $\widetilde{W}_{N}^{*} \boldsymbol{f} \neq S_{N} D_{N} \boldsymbol{f}$, and express \widetilde{W}_{N}^{*} using S_{N}, D_{N} as well as the circulant-shift matrix T_{N} defined in my lecture.
(c) Using Julia, do the following exercise and submit the figures.

```
# Assuming you already added FFTW and Plots packages,
# let's use them!
using FFTW, Plots
# Set up the x variable [-pi, pi].
N = 16;
x = ((-N/2):(N/2-1))*2*pi/N;
# Generate a simple example function f=cos(x).
f = cos.(x);
# Do the fftshift(fft) using proper normalization.
F = fftshift(fft(f)/sqrt(N));
# Plot the real and imaginary parts of F.
plot(real(F), line=:stem, marker=:circ, label="Re(F)")
plot!(imag(F), line=:stem, color=:red, marker=:star, label="Im(F)")
```

Print this figure and submit it. You may feel the result is counterintuitive!
(d) Using the result of (b), compute $\boldsymbol{F}=\widetilde{W}_{N}^{*} \boldsymbol{f}$ where \boldsymbol{f} is the same cos function as in (c). Note that you need to either use the fftshift function or generate the matrix S_{N} and do matrix-vector multiplication to obtain \boldsymbol{F}. Then display the real and imaginary parts using the plot function as before. What do you see here? You should see more intuitive results now. Submit this figure too.

Problem 6: Read the paper of the Discrete Cosine Transform by Gilbert Strang, which you can download from https://doi.org/10.1137/S0036144598336745.

