
MAT 271: Applied & Computational Harmonic
Analysis Comments on Homework 2

Problem 1: This was an easy problem. Most of you answered correctly.

Problems 2–3: (b) The point of this problem is to figure out the difference between the hand-
derived Fourier series coefficients and the the DFT coefficients computed via the fft
function of FFTW.jl. In Part 5) here, many of you used the phrases such as “they look
very similar” or “they are close”. Whenever you use such words, you must be more
precise and quantitative.
In order to really understand what is going on in this problem, you first need to go back
to the original definition of the DFT and the Fourier coefficients.

ck =
∫ 1

2

− 1
2

f (x)e−2πikx dx

≈
N−1∑
ℓ=0

f (xℓ)e−2πikxℓ∆x, xℓ =−1

2
+ℓ∆x and ∆x = 1

N

= 1

N

N−1∑
ℓ=0

f

(
−1

2
+ ℓ

N

)
e−2πik(−1/2+ℓ/N)

= e−πik

N

N−1∑
ℓ=0

f

(
−1

2
+ ℓ

N

)
e−2πikℓ/N

= (−1)k

N

N−1∑
ℓ=0

f

(
−1

2
+ ℓ

N

)
e−2πikℓ/N

= (−1)k

N

N−1∑
ℓ=0

fℓe−2πikℓ/N . (1)

Now, some of you discretized the interval via either N=1024; x=LinRange(-0.5,

0.5, N). This is wrong! The right end point x = 0.5 is excluded in the domain of
this function! So, you should do something like: N=1024; x=range(-0.5, 0.5,

N+1); x=x[1:end-1].
Now, to apply the factor (−1)k /N in Eq. (1), you can simply do either:
F=fft(fftshift(f))/N or F=fft(f)/N; F[2:2:N]=-F[2:2:N]. See my ex-
ample Julia script below. Finally, the summation portion can be computed by fft
(non-unitary original version) in Julia. Here is my Julia script for Problem 2 if we want
to match the hand-computed Fourier coefficients and FFTW.jl’s fft output as much
as possible. I also put my codes online, so please download them and run them to see
how much these two sets of coefficients agree. Note that the real part of the FFT out-
put is not zero. This is because the above discretization of x does not make f (x) = x
not an odd function exactly (due to the exclusion of the end point at x = 1/2). That’s
one of the discrepancies between the hand-computed Fourier coefficients and the FFT

computation other than the numerical errors due to the use of the trapezoidal rule to
approximate the Fourier coefficients via DFT. We all need to appreciate the subtlety of
the discretization!
By the way, when you submit your figures by hard copies, you need to be a bit more
considerate for the graders/readers. If you plot data using different colors, you should
submit the color hard copy! If you submit B&W printouts, then you should not use
color plots; instead, you should use different plot symbols via plot option, e.g., plot(...,
markershape=:circle); other marker shapes include :star5, :+, :diamond, etc.
Otherwise, your intention does not convey to the graders/readers. This is also abso-
lutely true when you submit your journal papers!!

Problem 2

define the basic parameters.
N=1024;
a=-0.5;
b=0.5;

Create an array of N equidistant points over [a,b).
Trying to exclude the point x=b=0.5 from the samples.
x=range(a,b,N+1);
x=x[1:end-1];

Create a function.
y = x; # In problem 3, this should be y=x.^2, of course.

Normalize the function to have a unit L^2 norm.
ey = norm(y);
y = y/ey;

Do the fft to approximate the Fourier series coefficients over this
interval. Note that we need to have 1/N here. You need to go back
to the original definition of the Fourier coefficients and its
approximation by the trapezoidal rule.
Note that fft essentially view the input data is defined over the
interval on [0,1), instead of [-1/2,1/2). So you need to do either
of the following two:
1) Apply fftshift to the input vector before taking fft; or
2) Apply the complex exponential factor exp(pi*k)=(-1)^k to the output
of fft, which is equivalent to changing the signum of the fft results
alternatively as fy[2:2:N]=-fy[2:2:N], where fy=fft(y)/N.
using FFTW; # Assuming you already added the FFTW.jl package
fy = fft(y)/N;
fy[2:2:N]=-fy[2:2:N];

Now, prepare the analytical Fourier coefficients you derived by
hand.

c = complex(zeros(N));
c[1] = 1/12.0; # for problem 3.
for k=1:N-1

c[k+1]=im*(-1)^k/(2*pi*k); # c[k+1]=(-1)^k/(2*(pi*k)^2); # for problem 3.
end

Normalize the coefficients
c = c/ey;

Now plot real and imaginary part separately using the semilog plot.

using Plots # Assuming you already added the Plots.jl package
p1 = plot(real(c[1:Int(N/2)]), label="Re(Hand Comp)", title="Real Part");
plot!(p1, real(fy[1:Int(N/2)]), color=:red, label="Re(via FFT)");

p2 = plot(imag(c[1:Int(N/2)]), label="Im(Hand Comp)", title="Imaginary Part");
plot!(p2, imag(fy[1:Int(N/2)]), color=:red, label="Im(via FFT)");

display(plot(p1, p2, layout=(1, 2)))

Let’s look at the more details around the origin.
p3 = plot(real(c[1:Int(N/16)]), line=:stem, marker=:circ, label="Re(Hand Comp)", title="Real Part");
plot!(p3, real(fy[1:Int(N/16)]), line=:stem, marker=:star, color=:red, label="Re(via FFT)");

p4 = plot(imag(c[1:Int(N/16)]), line=:stem, marker=:circ, label="Im(Hand Comp)", title="Imaginary Part");
plot!(p4, imag(fy[1:Int(N/16)]), line=:stem, marker=:star, color=:red, label="Im(via FFT)");
display(plot(p3, p4, layout=(1, 2)))

Do the similar computation for Problem 3. You can see that they match closely, but not exact
due to the approximation error by the trapezoidal rule and sampling. What happens if we
increase the number of samples, e.g., to N = 215?

Problem 4: 1)–3) Several people use the normal distribution factor as the parameter a, i.e., a =
1/(σ

p
2π). But my intention was to use a as the normalization constant so that the ℓ2 norm

of the input vector becomes 1. Once you do that, then you can follow the same strategy here
as above.

4) You got mixed results. In fact, it is true that the larger the value of σ (i.e., the wider the
Gaussian is), the faster the the decay of its Fourier transform because of it is proportional to
exp(−2πσ2ξ2) in the Fourier domain. But I was asking the decay of the Fourier coefficients
of the Gaussian on the finite interval [−1/2,1/2). So, the boundary effects at x = ±1/2
becomes more prominent compared to the smoothness. The Fourier coefficient magnitudes
follow more like exp(−2πσ2ξ2) in the low frequency region. But then, the boundary effects
start dominating. This fact was obscured if you use the wrong normalization a.

5) It seems that the decay of the Fourier coefficients of the Gaussian functions are faster than
that of the polynomials such as ax or ax2, which is the case in the low frequency region.
However, the periodized Gaussian over the interval [−1/2,1/2) is not a C∞ function. It’s
simply a continuous function, not even C 1 function because the derivatives do not match
at the boundary. Of course this derivative mismatch is less pronounced for small values of
σ or extremely large σ. Hence, in the finite length DFT, the quadratic polynomial behaves
similarly to the Gaussian with appropriate value of σ for the higher frequency part. Thus, the
decay of the Fourier coefficients of ax2 is slower than those of the Gaussian, but the decay
curve in the high frequency range looks similar to that of the Gaussian with σ= 1.

6) The Fourier transform of the Gaussian in this case is the following using Problem 3 of

HW #1:

F {ae−x2/(2σ2)} =F {a
p

2πσg (x;σ)} = a
p

2πσ
∫ ∞

−∞
g (x;σ)e−2πiξx dx = a

p
2πσe−2π2σ2ξ2

.

On the other hand, using FFTW.jl’s fft function, we can only approximate the Fourier
coefficients of the periodized Gaussian (or mutilated Gaussian) on [−1/2,1/2):

ck =
∫ 1

2

− 1
2

g (x;σ)e−2πikx dx.

Actual output is even different from this ck due to the error by the trapezoidal rule used to
obtain FFT/DFT. Therefore, there are two errors involved here: 1) Truncation of the interval;
and 2) error due to the trapezoidal rule. For more details, I strongly recommend to read [1,
Chap. 6].

Problem 5: (a) Please read the problem carefully. DN f represents the FFT operation in Julia with
FFTW.jl, i.e., fft(f). Hence,

DN =
p

NW ∗
N

Note that W ∗
N f is the unitary (i.e., normalized) version of the DFT.

(b), (d) If you follow my lecture07.pdf, you should be able to get the solution easily as
follows:

W̃ ∗
N f = SN DN SN f /

p
N .

Note that S∗
N = ST

N = S−1
N = SN .

References
[1] W. L. BRIGGS AND V. E. HENSON, The DFT: An Owner’s Manual for the Discrete Fourier

Transform, SIAM, Philadelphia, PA, 1995.

https://www.math.ucdavis.edu/~saito/courses/ACHA.s23/lecture07.pdf

