
MAT 271: Applied & Computational Harmonic Analysis
Homework 3: due Monday, 06/05/23

Problem 1: Read the the article on SVD by Gilbert Strang, which you can download from
https://archive.siam.org/pdf/news/828.pdf.

Problem 2: An n-dimensional spike process simply generates the standard basis vectors {e j }n
j=1 ⊂

Rn in a random order with equal probability, where e j has one at the j th entry and all the
other entries are zero. One can view this process as a unit impulse located at a random
position between 1 and n.

(a) Compute the covariance matrix of this process.

(b) Show that the Karhunen-Loève basis of this process is any orthonormal basis in Rn

containing a “DC” basis vector 1p
n

(1,1, · · · ,1)T.

Problem 3: Consider the following stochastic process called the ramp process:

X (t ) = t −H(t −τ), t ∈ [0,1), τ∼ unif[0,1),

where H(·) is the Heaviside step function, i.e., H(t ) = 1 if t ≥ 0; and H(t ) = 0 if t < 0.

(a) Show that the covariance function of this process is

Γ(s, t ) = min(s, t )− st , 0 ≤ s, t ≤ 1.

(b) Show that the Karhunen-Loève basis functions of this process are of the following form:

φk (t ) =p
2sinπkt , k = 1,2, . . .

(c) Discretize this process as follows. Let our sampling points be tk = 2k+1
2n , k = 0, . . . ,n −1.

Suppose the discontinuity t = τ does not happen exactly at the sampling points. Then
all the realizations whose discontinuities are located anywhere in the open interval
( 2k−1

2n , 2k+1
2n ) have the same discretized version. Therefore, any realization now has the

following form:

x j = (x0 j , . . . , xn−1, j )T, xk j =
{

2k+1
2n , for k = 0, . . . , j −1,

2k+1
2n −1, for k = j , . . . ,n −1,

where j is picked uniformly randomly from the set {0,1, · · · ,n−1}. (Note that the index
of the vector components starts with 0 for convenience). Take n = 256, and generate
256 realizations of this process. (You only have to construct a data matrix X whose
column vectors are x j , j = 0, . . . ,255. Then compute the covariance matrix, compute
the eigenvectors (i.e., KL vectors) using Julia, and compare those eigenvectors with the
sinusoids analytically obtained in (b).

https://archive.siam.org/pdf/news/828.pdf


Problem 4: We will work on Rogue’s Gallery dataset for computing PCA/KLT. You can submit
the print out of your Julia scripts with your comments and additional notes and figures.

(a) Download the MATLAB file:
https://www.math.ucdavis.edu/ saito/data/faces.mat
on your computer, and load into your Julia session using the package MAT.jl.

(b) Randomly split theses 143 faces into two groups of size 72 and 71. Let the training
dataset be those 72 faces, and the test dataset be the remaining 71 faces. Compute the
average face of the training dataset and display in Julia. Use the function heatmap
with the option ratio=:equal, colormap=grays to display the image in the
proper aspect ratio and with the grayscale colormap. Note that you need to install and
use the Plots.jl package for this operation.

(c) Subtract the average face from each face in the training and the test datasets and com-
pute the eigenfaces, i.e., the Karhunen-Loève basis of the training dataset. [Hint: You
need to use the SVD formulation we discussed in the class. Otherwise, your covariance
matrix becomes too huge to handle, i.e., 1282 ×1282. Then display the top five KLB
vectors as images in Julia corresponding to the five most significant eigenvalues. Dis-
play the five lowest frequency 2D DCT basis functions and compare them with the top
five KLB. Note that the function dct is available in the package FFTW.jl. I strongly
suggest that you check the documentation of the dct function.

(d) Compute the KL expansion coefficients of both the training and the test datasets. Note
that you must use the same KLB computed from the training dataset to compute these
coefficients of both datasets. Compute also the DCT coefficients of the datasets.

(e) Choose one face from the training dataset, and another face from the test dataset. Ap-
proximate these faces by the 72 KLB vectors and the 72 lowest frequency DCT vectors.
Display the approximations as images in Julia using the layout option (i.e., arrange
four images in one figure as 2×2 subfigures); see the Layouts documentation for the
details. Compute the residual error of these approximations and display them similarly.
Note that when you display and compare different images using heatmap commands,
you should use the same value scaling by supplying the range of the pixel values via
the option clims so that the same color/gray scale values corresponds to the same
physical pixel values. Check the Plots documentation for the details.

(f) Compute the average relative ℓ2 errors of the training dataset by the KLB approximation
as a function of the number of coefficients retained (starting from 0 retained coefficients
up to all the coefficients and plot it. Compute the same by the DCT approximation and
plot it on the same graph for comparison. Repeat this experiments for the test dataset.
What conclusion can you obtain from these experiments?

https://www.math.ucdavis.edu/~saito/data/faces.mat
https://github.com/JuliaIO/MAT.jl
https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaMath/FFTW.jl
https://docs.juliaplots.org/stable/layouts/
https://docs.juliaplots.org/stable/generated/attributes_subplot/


Problem 5: Let Φ ∈ L2(R2) and let S : L2(R) → L2(R2) be a windowed Fourier transform with
a window function g satisfying the appropriate conditions as a window function as was
discussed in the lecture. Then prove the following statement:
There exists a function f ∈ L2(R) such that Φ(x,ξ) = S f (x,ξ) if and only if

Φ(x0,ξ0) =
∫ ∞

−∞

∫ ∞

−∞
Φ(x,ξ)K (x0, x,ξ0,ξ)dx dξ,

where the so-called reproducing kernel is defined as

K (x0, x,ξ0,ξ) := 〈
gx,ξ, gx0,ξ0

〉
.


